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6.1 Introduction

This chapter presents analysis of log-linear models for contingency tables. In
analysis of contingency tables, we are interested in associations and interactions
among the categorical variables or interpretations of the parameters describing
the model structure. Then our goal is to find a best model such that the model
structure is simple and the model has few parameters.

The log-linear models which is used in analysis of contingency tables are a
generalized linear model for counted data and can easily describe the variety of
associations and interactions among the variables. To search a best model, we
assess the effects on interaction terms in log-linear models by goodness of fit
tests. The methodology for analysis of contingency tables is described in many
books, for example, Bishop et al. (1975), Everitt (1977) and Agresti (2002).

This chapter is organized as follows: Section 6.2 introduces log-linear models
and generalized linear models. Moreover we provide the procedures to find the
best model by using goodness of fit tests for independence and comparing two
log-linear models. Section 6.3 presents the XploRe functions to make inferences
for log-linear models. Contingency table analysis using XploRe are illustrated
in Section 6.4.

6.2 Log-linear models

Let Y = (Y1, Y2, . . . , YD) be categorical variables. Then a rectangular (N ×D)
data matrix consisting of N observations on Y can be rearranged as a D-way
contingency table with cells defined by joint levels of the variables. Let nij...t
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denote the frequency for a cell Y = (i, j, . . . , t) and n = {nij...t}. Suppose that
Y has a multinomial distribution with an unknown parameter θ = {θij...t},
where θij...t ≥ 0 and

∑
θij...t = 1. The log-linear model is expressed in the

form

log θ = Xλ, (6.1)

where X is a D × r design matrix and λ is an r × 1 parameter vector. When
Y has a Poisson distribution, the log-linear model is re-written by

log m = Xλ, (6.2)

where m = {mij...t = Nθij...t} is the vector of expected frequencies.

6.2.1 Log-linear models for two-way contingency tables

Consider an I × J contingency table. The log-linear model is represented by

log θij = λ0 + λ1
i + λ2

j + λ12
ij , (6.3)

for all i and j, under the constraints of the λ terms to sum to zero over any
subscript such as

I∑
i=1

λ1
i = 0,

J∑
j=1

λ2
j = 0,

I∑
i=1

λ12
ij =

J∑
j=1

λ12
ij = 0. (6.4)

The log-linear model given by (6.3) is called the saturated model or the full
model that there is statistically dependence between Y1 and Y2.

By analogy with analysis of variance models, we define the overall mean by

λ0 =
1

IJ

I∑
i=1

J∑
j=1

log θij ,

the main effects of Y1 and Y2 by

λ1
i =

1
J

J∑
j=1

log θij − λ0,

λ2
j =

1
I

I∑
i=1

log θij − λ0,
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and the two-factor effect between Y1 and Y2 by

λ12
ij = log θij − (λ1

i + λ2
j ) − λ0.

Then the main and two-factor effects are determined by the odds and odds
ratios, and can be written by

λ1
i =

1
IJ

I∑
i′=1

J∑
j=1

log
θij

θi′j
,

λ2
j =

1
IJ

I∑
i=1

J∑
j′=1

log
θij

θij′

and

λ12
ij =

1
IJ

I∑
i′=1

J∑
j′=1

log
θijθi′j′

θi′jθij′
.

For the independence model that Y1 is statistically independent of Y2, the cell
probability θij can be factorized into the product of marginal probabilities θi+

and θ+j , that is,

θij = θi+θ+j ,

where θi+ =
∑J

j=1 θij and θ+j =
∑I

i=1 θij . Then the two-factor effect is

λ12
ij =

1
IJ

I∑
i′=1

J∑
j′=1

log
θi+θ+jθi′+θ+j′

θi′+θ+jθi+θ+j′
= 0,

so that the log-linear model for the independence model is expressed by

log θij = λ0 + λ1
i + λ2

j ,

for all i and j.

6.2.2 Log-linear models for three-way contingency tables

For an I × J × K contingency table, the saturated log-linear model for the
contingency table is

log θijk = λ0 + λ1
i + λ2

j + λ3
k + λ12

ij + λ13
ik + λ23

jk + λ123
ijk ,
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for all i, j and k. The λ terms are also satisfied the constraints that

I∑
i=1

λ1
i =

J∑
j=1

λ2
j =

K∑
k=1

λ3
k = 0,

I∑
i=1

λ12
ij =

J∑
j=1

λ12
ij = · · · =

K∑
k=1

λ23
jk = 0,

I∑
i=1

λ123
ijk =

J∑
j=1

λ123
ijk =

K∑
k=1

λ123
ijk = 0.

We define the λ terms as follows: The overall mean is given by

λ0 =
1

IJK

I∑
i=1

J∑
j=1

K∑
k=1

log θijk.

The main effects of Y1, Y2 and Y3 are

λ1
i =

1
JK

J∑
j=1

K∑
k=1

log θijk − λ0,

λ2
j =

1
IK

I∑
i=1

K∑
k=1

log θijk − λ0,

λ3
k =

1
IJ

I∑
i=1

J∑
j=1

log θijk − λ0.

Each interaction effect is given by

λ12
ij =

1
K

K∑
k=1

log θijk − (λ1
i + λ2

j ) − λ0,

λ13
ik =

1
J

J∑
j=1

log θijk − (λ1
i + λ3

k) − λ0,

λ23
jk =

1
I

I∑
i=1

log θijk − (λ2
j + λ3

k) − λ0

and

λ123
ijk = log θijk − (λ12

ij + λ13
ik + λ23

jk) − (λ1
i + λ2

j + λ3
k) − λ0.
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Like log-linear models for two-ways contingency tables, the λ terms in the log-
linear models for three-way contingency tables directly relate to the odds and
odds ratios.

Here we introduce an important class of independence models that are called
hierarchical log-linear models. In the hierarchical models, if high-order λ terms
with certain variables are contained in the model, all lower-order λ terms with
these same variables are included. For instance, when a log-linear model con-
tains {λ12

ij }, the log-linear model also contains {λ1
i } and {λ2

j}. We assume
that all log-linear models are the hierarchical model. Table 6.1 is the list of
the hierarchical log-linear models for three-way contingency tables. Then in-
terpretations of parameters in the log-linear models refer to the highest-order
terms.

In log-linear models for conditional independence models, the two-factor ef-
fects correspond to partial associations. For instance, the log-linear model
[Y1Y2][Y2Y3] permits two-factor terms for associations between Y1 and Y2, and
Y2 and Y3, but does not contain a two-factor term for an association between Y1

and Y3. Then the log-linear model [Y1Y2][Y2Y3] specifies conditional indepen-
dence between Y1 and Y3 given Y2. In the log-linear model [Y1Y2][Y1Y3][Y2Y3]
called the no three-factor interaction model, there exists conditional depen-
dence for all three pairs. Then the no three-factor interaction model has equal
conditional odds ratios between any two variables at each level of the third
variable. For example, the conditional odds ratio of Y1 to Y2 in the k-th level
of Y3 does not depend on k, and is given by

log
mijkmIJk

miJkmIjk
= λ12

ij + λ12
IJ − λ12

iJ − λ12
Ij ,

for i = 1, . . . , I − 1, j = 1, . . . , J − 1 and all k.

With multi-way contingency tables, the independence models are more compli-
cated than the models for three-way contingency tables. The log-linear models
can also describe easily several models for multi-way contingency tables. The
basic principles of log-linear models for three-way contingency tables can be
extended readily to multi-way contingency tables.

6.2.3 Generalized linear models

The log-linear model is a special case of generalized linear models (McCullagh
and Nelder, 1989). For cell frequencies in contingency tables, the generalized
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Table 6.1: Independence models for three-way contingency tables

Symbol Log-linear model
Mutual independence
[Y1] [Y2] [Y3] log θijk = λ0 + λ1

i + λ2
j + λ3

k

Joint independence from two-factors
[Y1] [Y2Y3] log θijk = λ0 + λ1

i + λ2
j + λ3

k + λ23
jk

[Y1Y2] [Y3] log θijk = λ0 + λ1
i + λ2

j + λ3
k + λ12

ij

[Y1Y3] [Y2] log θijk = λ0 + λ1
i + λ2

j + λ3
k + λ13

ik

Conditional independence
[Y1Y2] [Y1Y3] log θijk = λ0 + λ1

i + λ2
j + λ3

k + λ12
ij + λ13

ik

[Y1Y3] [Y2Y3] log θijk = λ0 + λ1
i + λ2

j + λ3
k + λ13

ik + λ23
jk

[Y1Y2] [Y2Y3] log θijk = λ0 + λ1
i + λ2

j + λ3
k + λ12

ij + λ23
jk

No three-factor interaction
[Y1Y2] [Y1Y3] [Y2Y3] log θijk = λ0 + λ1

i + λ2
j + λ3

k + λ12
ij + λ13

ik + λ23
jk

linear models assume a Poisson distribution as the link function. Thus the
log-linear models are given by equation (6.2).

Consider a 2 × 3 contingency table. From the constraints

2∑
i=1

λ1
i = 0,

3∑
j=1

λ2
j = 0,

2∑
i=1

λ12
ij =

3∑
j=1

λ12
ij = 0, (6.5)

the parameter vector is identified by

λ =
[
λ0, λ

1
1, λ

2
1, λ

2
2, λ

12
11, λ

12
12

]T
.

Thus the log-linear (6.2) can be written as
⎡
⎢⎢⎢⎢⎢⎢⎣

log m11

log m12

log m13

log m21

log m22

log m23

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 1 0
1 1 0 1 0 1
1 1 −1 −1 −1 −1
1 −1 1 0 −1 0
1 −1 0 1 0 −1
1 −1 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

λ0

λ1
1

λ2
1

λ2
2

λ12
11

λ12
12

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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When the maximum likelihood estimates (MLEs) of λ can not be found directly,
iterative algorithms such as the Newton-Raphson and Fisher-scoring algorithms
or the iterative proportional fitting procedure are applied. To compute the
MLEs λ̂ in log-linear models, XploRe uses the Newton-Raphson and Fisher-
scoring algorithms.

6.2.4 Fitting to log-linear models

Chi-squared goodness of fit tests

To test a log-linear model against the saturated model, we estimate the ex-
pected frequencies of the log-linear model and evaluate the adequacy by the
Pearson chi-squared statistic. When the MLEs λ̂ in a log-linear model are
obtained, the expected frequencies are estimated from

m̂ = exp(Xλ̂).

To assess a log-linear model fitting to the data by comparing n to m̂, the
Pearson chi-squared statistic

χ2 =
∑

i,j,...,t

(nij...t − m̂ij...t)2

m̂ij...t

is computed. As another measure of goodness of fit, the likelihood ratio test
statistic is used. This test statistic is computed from

G2 = 2
∑

i,j,...,t

nij...t log
nij...t

m̂ij...t
.

If the sample size is sufficiently large, χ2 and G2 have an asymptotic chi-squared
distribution with degrees of freedom (df) equal to the difference of the number
of free parameters in the saturated model and a log-linear model. Then the
chi-squared goodness of fit test can be conducted by the value of χ2 or G2.

Moreover the likelihood ratio test statistic G2 can be used to compare two log-
linear models M1 and M2. Then M2 is nested in M1, such that every nonzero
λ terms in M2 is contained in M1. For example, the log-linear model [Y1Y2][Y3]
is the nested model in the log-linear model [Y1Y2][Y2Y3] and these models are
expressed by

M1 : log θijk = λ0 + λ1
i + λ2

j + λ3
k + λ12

ij + λ23
jk,

M2 : log θijk = λ0 + λ1
i + λ2

j + λ3
k + λ12

ij .
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Thus M2 is simpler than M1 and M1 must hold when M2 holds. Assuming
that M1 holds, we test whether M2 fits the data as well as M1. To compare
two models, the following test statistic is used:

�G2 = G2
2 − G2

1, (6.6)

where G2
1 and G2

2 are the likelihood ratio test statistics for M1 and M2. Then
�G2 also has an asymptotic chi-squared distribution with df equal to df for M1−
df for M2.

When the value of �G2 is in a critical region, we conclude that M2 provides
a better description of the data. Furthermore �G2 is computed to compare a
nested model in M2 with M2. If the value of �G2 is out a critical region, we
re-compare another nested model in M1 with M1. Repeating goodness of fit
tests to compare nested models, we find a best model.

As another criteria to compare nested models, the Akaike information criteria
(AIC) and Bayesian information criteria (BIC) are well known.

Model residuals

The goodness of fit statistic gives the summary of how a log-linear model fits
to the data. We examine lack of fit by comparing observed data to the fitted
data individually.

For cell (i, j) in a two-way contingency table, the Pearson standardized residual
is defined by

eij =
nij − m̂ij√

m̂ij

.

The Pearson residual is also related to the Pearson chi-squared test statistics
by

χ2 =
∑
i,j

e2
ij .

When a log-linear model holds, the residuals {eij} have an approximate normal
distribution with mean 0. Then, by checking whether the Pearson residuals are
larger than about ±2 that is standard normal percentage points, we detect the
presence of the data that are influential on the fit of a log-linear model.
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6.3 Inference for log-linear models using XploRe

To make inferences for log-linear models, we use the functions in the glm library.
The library is available by

library("glm")

6.3.1 Estimation of the parameter vector λ

The parameter vector λ can be estimated by using the glmest function

glmest("polog", x, n)

where polog is a Poisson distribution with logarithm link function, x is the
design matrix and n is the cell frequencies for contingency tables. Executing

lambda = glmest("polog", x, n)

the estimates of λ are assigned to the variable lambda. Then lambda contains
the following output:

b : the estimated parameter vector λ

bv : the estimated covariance of b

stat : several statistics

The expected frequencies m are also computed from

m = exp(x*lambda.b)

Moreover the glmest function and other functions in glm library can be also
specified several options by defining opt with glmopt. For the optional param-
eters, refer to Härdle et al. (1999) or Help function in XploRe.
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6.3.2 Computing statistics for the log-linear models

A number of statistical characteristics can be computed using the glmstat
function. Then statistical characteristics can be obtained from

stat = glmstat("polog", x, m, lambda.b, lambda.bv)

and are stored in the output stat:

df : degrees of freedom

deviance : the deviance of the estimated model

pearson : the Pearson statistic

loglik : the log-likelihood of the estimated model, using the estimated dis-
persion parameter

aic, bic : Akaike’s AIC and Schwarz’ BIC criterion, respectively

r2, adr2 : the (pseudo) coefficient of determination and its adjusted version,
respectively

it : the number of iterations needed

ret : the return code

nr : the number of replicated observation in x, if they were searched for.

6.3.3 Model comparison and selection

The computation of the likelihood ratio test statistic for comparing nested
models can be performed by the glmlrtest function:

{lr, pvalue} = glmlrtest(loglik2, df2, loglik1, df1)

where loglik1 and loglik2 are the log-likelihoods for the log-linear models
M1 and M2. Note that M2 must be the nested model in M1. These values
are obtained from the glmstat function. The augments df1 and df2 are dfs
for each model. Executing the above call, the test statistic lr and the p-value
pvalue are yielded.
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Moreover, to select the best model automatically, XploRe has the glmselect,
glmforward and glmbackward functions. The glmselect function performs a
complete search model selection, the glmforward and glmbackward functions
do the forward and backward search model selections, respectively. The syntax
of these functions is the same as glmest. Note that best models found by
these functions are not always hierarchical log-linear models. Then we repeat
to compute the likelihood ratio statistics for comparing the nested models and
finally find the best model. When the parameters λ0, {λA

i } and {λB
j } are

contained in all models, the optional parameter fix that specifies them is
described as follows:

opt = glmopt("fix", 1|2|3)

To search the best model by using the backward search model selection, we
type

select = glmbackward("polog", x, m, opt)

Then the output list select consists of five components:

best : the five best models

bestcrit : a list containing bestcrit.aic and bestcrit.bic, the Akaike
and Schwarz criteria for the five best models

bestord : the best models of each order

beatordcrit : like bestcrit, but for the best model for each order

bestfit : containing bestfit.b, bestfit.bv and bestfit.stat, the estima-
tion results for the best model

6.4 Numerical analysis of contingency tables

6.4.1 Testing independence

Chi-squared test

The data in Table 6.2 are a cross-sectional study of malignant melanoma taken
from Roberts et al. (1981) and treated in Dobson (2001). For the two-way
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table, we are interested in whether there exists a association between Tumor
type and Site.

Table 6.2: Contingency table with tumor type and site

Tumor Type (i) Site (j) Cell frequency
Hutchinson’s melanotic freckle (H) Head & neck (HN) 22

Trunk (T) 2
Extremities (E) 10

Superficial spreading melanoma (S) Head & neck (HN) 16
Trunk (T) 54
Extremities (E) 115

Nodular (N) Head & neck (HN) 19
Trunk (T) 33
Extremities (E) 73

Indeterminate (I) Head & neck (HN) 11
Trunk (T) 17
Extremities (E) 28

Table 6.3: Expected frequencies for the independence model

Tumor Type Site Cell frequency
Hutchinson’s melanotic freckle Head & neck 5.78

Trunk 9.01
Extremities 19.21

Superficial spreading melanoma Head & neck 31.45
Trunk 49.03
Extremities 104.52

Nodular Head & neck 21.25
Trunk 33.13
Extremities 70.62

Indeterminate Head & neck 9.52
Trunk 14.84
Extremities 31.64

Let m = {mij} be the expected frequencies for the contingency table. The
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log-linear model that Tumor type is independent of Site is expressed by

log mij = λ0 + λType
i + λSite

j , (6.7)

for all i and j. From the constraints

λType
H + λType

S + λType
N + λType

I = λSite
HN + λSite

T + λSite
E = 0,

the parameter vector λ for the independence model is identified by

λ = [λ0, λ
Type
H , λType

S , λType
N , λSite

HN , λSite
T ].

To find the expected frequencies, we estimate the MLEs λ̂ using the following
statements:

library("glm")
n=#(22,2,10,16,54,115,19,33,73,11,17,28)
x=read("design.dat")
lambda = glmest("polog", x, n)

where design.dat is specified by

1 -1 -1 -1 -1 -1
1 -1 -1 -1 1 0
1 -1 -1 -1 0 1
1 1 0 0 -1 -1
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 -1 -1
1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 -1 -1
1 0 0 1 1 0
1 0 0 1 0 1

The expected frequencies shown in Table 6.3 can be obtained by

m = exp(x*lambda.b)

and are compared to the data in Table 6.2 by using χ2. The value of χ2 is
computed from
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lambda.stat

or

stat = glmstat("polog", x, m, lambda.b, lambda.bv)
stat.pearson

Then χ2 of 65.8 is very significant compared to the chi-square distribution with
6 df and indicates that the independence model does not fit to the data. We
can conclude that there exists the association between Tumor type and Site.

Note that the function crosstable provides the chi-squared statistic for testing
independence for two-way contingency tables.

Model residuals

Table 6.4: Pearson residuals for the independence model

Tumor Type Site Residual
Hutchinson’s melanotic freckle Head & neck 6.75

Trunk 2.34
Extremities -2.10

Superficial spreading melanoma Head & neck -2.76
Trunk 0.71
Extremities 1.03

Nodular Head & neck -0.49
Trunk -0.02
Extremities 0.28

Indeterminate Head & neck 0.48
Trunk 0.56
Extremities -0.65

Table 6.4 shows the Pearson standardized residuals for the fit of the indepen-
dence model. The values are easily computed from

e = (n-m)/sqrt(m)
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We can see that the residual for Hutchinson’s melanotic freckle and Head &
neck reflects the overall poor fit, because the value of 6.752 = 45.56 is related
to χ2 = 65.8.

6.4.2 Model comparison

Chi-squared test

The data in Table 6.5 summarize to a survey the Wright State University school
of Medicine and the United Health Services in Dayton, Ohio. The analysis for
the contingency table is given in Agresti (2002). For the three-way table, we
search the best model by using the likelihood ratio tests.

Table 6.5: Alcohol, cigarette and marijuana use for high school seniors

Alcohol use Cigarette use Marijuana use Cell frequency
(A) (C) (M)
Yes Yes Yes 911

No 538
No Yes 44

No 456
No Yes Yes 3

No 43
No Yes 2

No 279

Table 6.6 shows the expected frequencies for log-linear models of no three-factor
interaction and conditional independence models. The expected frequencies for
each model are computed by using glmest.

The expected frequencies for the log-linear model [AC][AM ][CM ] are found
using the following statements:

library("glm")
n=#(911, 538, 44, 456, 3, 43, 2, 279)
x=read("design.dat")
lambda = glmest("polog", x, n)
m = exp(x*lambda.b)
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Table 6.6: Expected frequencies for log-linear models applied to Table 6.5

Log-linear model
A C M [AC][AM ] [AM ][CM ] [AC][CM ] [AC][AM ][CM ]

Yes Yes Yes 710.00 909.24 885.88 910.38
No 175.64 438.84 133.84 538.62

No Yes 131.05 45.76 123.91 44.62
No 2005.80 555.16 470.55 455.38

No Yes Yes 5.50 4.76 28.12 3.62
No 24.23 142.16 75.22 42.38

No Yes 1.02 0.24 3.93 1.38
No 276.70 179.84 264.45 279.62

Then, under the constraints with the λ terms, the parameter vector λ is iden-
tified by

λ = [λ0, λ
A
Y es, λ

C
Y es, λ

M
Y es, λ

AC
Y es,Y es, λ

AM
Y es,Y es, λ

CM
Y es,Y es]

T ,

and the design matrix x is specified by

1 1 1 1 1 1 1
1 1 1 -1 1 -1 -1
1 1 -1 1 -1 1 -1
1 1 -1 -1 -1 -1 1
1 -1 1 1 -1 -1 1
1 -1 1 -1 -1 1 -1
1 -1 -1 1 1 -1 -1
1 -1 -1 -1 1 1 1

To compute the expected frequencies of the nested models in the log-linear
model [AC][AM ][CM ], we delete the columns of x corresponding to λ setting
to zero in these models and then execute the above statements. For example,
deleting the seventh column of x, we can obtain the expected frequencies of the
log-linear model [AC][AM ]. The command

x[,1|2|3|4|5|6]

produces the design matrix for the log-linear model [AC][AM ].
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Table 6.7 shows results of the likelihood ratio and Pearson chi-squared tests
for log-linear models. The statements to compute the values of G2 for the
saturated model M1 and a log-linear model M2 are

stat1 = glmstat("polog", x1, n, lambda1.b, lambda1.bv)
df1 = rows(lambda1.b)
stat2 = glmstat("polog", x2, n, lambda2.b, lambda2.bv)
df2 = rows(lambda2.b)
{lr,pvalue}=glmlrtest(stat2.loglik, df2, stat1.loglik, df1)
lr
pvalue

where the design matrix x1 for the saturated model is specified by

1 1 1 1 1 1 1 1
1 1 1 -1 1 -1 -1 -1
1 1 -1 1 -1 1 -1 -1
1 1 -1 -1 -1 -1 1 1
1 -1 1 1 -1 -1 1 -1
1 -1 1 -1 -1 1 -1 1
1 -1 -1 1 1 -1 -1 1
1 -1 -1 -1 1 1 1 -1

The value of χ2 is also computed from

lambda = glmest("polog",x,n)
lambda.stat

Then the values of G2 and χ2 or p-value indicate that the model [AC][AM ][CM ]
fits well to the data.

Model residuals

To examine lack of fit to the data, we analyze the residuals for each log-linear
model. Table 6.8 shows the Pearson standardized residuals for the log-linear
models. All residuals for the log-linear model [AC][AM ][CM ] are very small
and demonstrate that the model well fits to the data. On the other hand, the
residuals for conditional independence models indicate poorly fit to the data.
In particular, the extremely large residuals of -34.604 for the model [AC][AM ]
and of 34.935 for the model [AC][CM ] cause the lack of fit to the data.
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Table 6.7: Goodness of fit tests for log-linear models

Log-linear model G2 χ2 Degrees of freedom p-value
[AC][AM ][CM ] 0.4 0.4 1 0.53

[AC][AM ] 497.4 443.8 2 0.00
[AM ][CM ] 187.8 177.6 2 0.00
[AC][CM ] 92.0 80.8 2 0.00

Table 6.8: The Pearson standardized residuals for log-linear models

Log-linear model
A C M [AC][AM ] [AM ][CM ] [AC][CM ] [AC][AM ][CM ]

Yes Yes Yes 7.543 0.058 0.844 0.020
No 27.342 4.734 34.935 -0.027

No Yes -7.604 -0.260 -7.179 -0.092
No -34.604 -4.209 -0.671 0.029

No Yes Yes -1.077 -0.807 -4.737 -0.324
No 3.813 -8.317 -3.715 0.095

No Yes 0.969 3.596 -0.975 0.524
No 0.138 7.394 0.895 -0.037

Test for partial associations

Moreover, it is possible to compare nested log-linear models by testing par-
tial associations. We test to compare the model [AC][AM ] with the model
[AC][AM ][CM ]. Then the test examines whether there exists a partial associ-
ation between Alcohol use and Cigarette use, that is,

λCM
11 = λCM

12 = λCM
21 = λCM

22 = 0.

Each log-linear model is expressed by

M1 : log mijk = λ0 + λA
i + λC

j + λM
k + λAC

ij + λAM
ik + λCM

jk ,

M2 : log mijk = λ0 + λA
i + λC

j + λM
k + λAC

ik + λAM
jk .

From Table 6.7,

�G2 = 497.4 − 0.4 = 497.0
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and df = 2−1 = 1, so that �G2 provides strong evidence of a partial association
between Cigarette use and Marijuana use. We can also test for partial asso-
ciations by comparing the models [AM ][CM ] and [AC][CM ] with the model
[AC][AM ][CM ].

Search for the best model

Next we illustrate the best model search using the glmbackward function. Using

opt = glmopt("fix", 1|2|3|4)

we specify to contain λ0, {λA
i }, {λC

j } and {λM
k } in the model. To choose a best

model, we execute

select=glmbackward("polog", x, n, opt)
select.best

where x is the design matrix for the saturated model. Then select.best
displays the five best models for the data:

Contents of best
[1,] 1 1 1 1 1
[2,] 2 2 2 2 2
[3,] 3 3 3 3 3
[4,] 4 4 4 4 4
[5,] 5 5 0 5 5
[6,] 6 6 6 6 0
[7,] 7 7 7 0 7
[8,] 0 8 8 8 8

In the above output, each row corresponds to the parameter vector λ in the
saturated log-linear model as follows:
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row λ term
1 λ0

2 {λA
Y es}

3 {λC
Y es}

4 {λM
Y es}

5 {λAC
Y es,Y es}

6 {λAM
Y es,Y es}

7 {λCM
Y es,Y es}

8 {λACM
Y es,Y es,Y es}

Those components that are not contained in a log-linear model are indicated
by zero. The first column shows the no three-interaction model, since the row
8 is zero. The second column represents the saturated model. The last three
columns are not the hierarchical models. Therefore the model [AC][AM ][CM ]
is also selected as the best model. The output select.bestfit includes all
estimation results with the best model.
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