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Alternating least squares in

nonlinear principal components
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Principal components analysis (PCA) is probably the most popular descriptive
multivariate method for analyzing quantitative data with ratio and interval scale
measures. When applying PCA to nominal and ordinal data, the data are processed
by a method such as optimal scaling, which nonlinearly transforms nominal
and ordinal data into quantitative data. Therefore, PCA with optimal scaling
is called nonlinear PCA. Nonlinear PCA reveals nonlinear relationships among
variables with different measurement levels and therefore presents a more flexible
alternative to ordinary PCA. The alternating least squares algorithm is utilized for
nonlinear PCA. The algorithm alternates between optimal scaling for quantifying
nominal and ordinal data and ordinary PCA for analyzing optimally scaled data.
This article discusses two nonlinear PCA algorithms, namely, PRINCIPALS and
PRINCALS. © 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Principal components analysis (PCA) is probably
the most popular descriptive multivariate method
for analyzing quantitative data with ratio and interval
scale measures. However, since PCA assumes that all
variables are measured by ratio and interval scales,
it is not directly applicable to qualitative data such
as nominal and ordinal data. This paper discusses an
extension of PCA that handles mixed quantitative and
qualitative data. In applying PCA to mixed data,
the qualitative data must be quantified. Optimal
scaling is a quantification technique that optimally
assigns numerical values to qualitative scales within
the restrictions of the measurement characteristics of
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the qualitative variables.!> The qualitative data are
then nonlinearly transformed into quantitative data.
Thus, PCA with optimal scaling is called nonlinear
PCA.’> Nonlinear PCA reveals nonlinear relationships
among variables with different measurement levels
and therefore presents a more flexible alternative to
ordinary PCA.

Nonlinear PCA utilizes the alternating least
squares (ALS) algorithm. This algorithm divides the
parameters of nonlinear PCA into model parameters
and data parameters, and finds their least squares
estimates by updating each of them in turn. The
algorithm consists of two steps: first, the data
parameters are estimated using optimal scaling, and
second, the model parameters are computed by PCA of
the optimally scaled data obtained in the previous step.
We discuss the two ALS algorithms typically employed
in nonlinear PCA; PRINCIPALS'® and PRINCALS.?

QUANTIFICATION OF QUALITATIVE
DATA

Let X=(X; X;---X,) be an nxp matrix of
observations on 7 objects and p variables. To quantify
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X of the qualitative variable j with K; categories, the
vector is coded by using an 7z x K; indicator matrix

g . &K
G = (gjix) = : = (g;'l g,’K,-) )

8jnl .- §jnk;

where

1 if object i belongs to category k,
gjik = 10 if object i belongs to some

other category k' (# k).

For example, given

3 1 4
1 2 3
X=X X Xy=12 1 1],
2 2 2
31 1
the indicator matrix of X is
G=(G G Gy)
0 0 1 1 0 0O 0 0 1
1 0 O 0 1 0O 0 1 O
= 0 1 O 1 0 1 0 0 O
0 1 O 0 1 01 0 O
0 0 1 1 0 1 0 0 O

Optimal scaling finds Kjx 1 category quantifica-
tions Y; under the restrictions imposed by the
measurement level of variable ; and transforms
Xj into an optimally scaled vector X* = G;Y;. For
nominal scale data, the quantification is unre-
stricted. Ordinal scale data are quantified by mono-
tone regression on account of the monotonicity
restriction.

NONLINEAR PCA

For a data matrix X of # objects by p quantitative
variables, PCA postulates that X is approximated by
the bilinear form

X =7ZAT,
where Z is an 7 x r matrix of # component scores

on r (1 <r<p) components and A is a p x r matrix
of p component loadings on r components. PCA is

Volume 5, November/December 2013

Alternating least squares in nonlinear principal components

formulated in terms of the loss function
o (Z,A) =tr (X-X) (X-X)
=tr (X-2ZA") (X-ZAT). (1)

The minimum of the loss function (Eq. (1)) over Z
and A is found by singular value decomposition of X
or by eigen-decomposition of X' X.

To handle any combination of quantitative and
qualitative data, nonlinear PCA requires the optimal
quantification of qualitative data for obtaining X*
in addition to estimating Z and A, and thus the
loss function has to be minimized over Z, A
and X*.

In nonlinear PCA, we define two types of
loss functions; the first derived from a low-rank
approximation of X* extended to Eq. (1) and
the second obtained by homogeneity analysis with
restrictions. We show the loss functions in the
following subsections. The ALS algorithm is used to
minimize the loss functions.

Low-Rank Matrix Approximation
In the presence of qualitative variables in X, the loss
function (Eq. (1)) is expressed as

o1 (Z,A,X*) = tr (X* = X) " (X* = X)
=tr (X*—ZAT) (X*—=ZAT) (2)

and is minimized over Z, A, and X* under the
restrictions

X*TX*

X*T1, = 0, and diag |: :| =1L, (3)

where 1, and 0, are vectors of ones and zeros of
length 7 and p, respectively, and I, is the p x p identity
matrix. Since optimal scaling for X* can be performed
separately and independently for each variable, the
loss function (Eq. (2)) can be rewritten as

o1 (Z,A,X*) = ; (X;f - ZA,-T)T (X}‘ —ZA/ )
P

=Y oy (z, A,,X;.*) . (4)

=1

Thus, we can minimize o(Z,A,X*) by independently
minimizing each oy; (Z, A, X5 under the measure-
ment restrictions on variable ;.
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Homogeneity Analysis

Homogeneity analysis is a method to maximize the
homogeneity of several categorical variables and
determine quantifications of the categories of each
variable such that the homogeneity is maximized.’
Let Z be n x r object scores (component scores) and
W; be K;xr category quantifications of variable ;
(j=1, ...,p). Homogeneity analysis finds the Z and
W= (Wi, ...,W,) that well matches G;W; to Z over
j. The loss function measuring the departure from
homogeneity is given by

p
oy (Z,W) = Ztr (Z — G,‘W,‘)T (Z — G/W/‘) 5
=1
p
= ZUH;' (Z,W)) (5)
i=1

J

and is minimized over Z and W under the restrictions
Z™,=0, and Z'Z = #ul,. (6)

The minimum of o y(Z,W) is obtained by separately
minimizing each o yj(Z,W;).

Gifi defines nonlinear PCA as homogeneity
analysis imposing rank-one restrictions’®

W; =Y;A;, (7)

where Y; is a K; x 1 vector of category quantifications
and A; is a 1x7 vector of weights (component
loadings). Variables on which rank-one restrictions
are imposed are called single variables and variables
without restrictions are multiple variables.

To minimize o y;(Z,W;) under rank-one restric-
tions (Eq. (7)), we first obtain the least squares estimate
W; of W,. For a fixed W}, op, (Z, W) can be parti-
tioned as

on, (Z,W)) = tr (2= GW))" (Z - GW)),
=tr (Z — G,‘W)T (Z — Gj@j) 5
+ tr (Y,‘A,’ — ﬁ’j)—r (GTG/) (Y/‘A,' — \3{/,) . (8)

We then minimize the second term on the right
hand side of Eq. (8) over Y; and A; under the
restrictions imposed by the measurement level of
variable ;.

Note that, for all variables that are single,
minimizing the loss function (Eq. (5)) is equivalent
to minimizing the loss function (Eq. (2)) under
restrictions (Eq. (3) and Eq. (6)).
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THE ALS ALGORITHM
FOR NONLINEAR PCA

The ALS algorithm is a computational algorithm for
minimizing a least squares loss function and is applied
to solve various matrix optimization problems.’
When the closed-form solutions of parameter matrices
for minimizing the least squares loss function are
unavailable, the ALS algorithm finds the least squares
estimates of these parameters by updating each of the
parameter matrices in turn, keeping the others fixed.

Suppose we wish to minimize a loss function
o (01,02,03) over the parameter matrices 61, 65, and
03. Let 0 be the t-th estimate of 6. The ALS algorithm
updates the estimates of 61, 65, and 03 by solving the
least squares problem for each parameter:

t+1 : t t

91( ):argrré}n0'<91,92()’93()>’
t+1 . t+1 t

Oé ) — arg rré;n o (91( ),92,935 )> R

(93(t+]) = arg rr;in o (91(t+1),92(t+1),93> .

If each update of the ALS algorithm improves the value
of the loss function and if the function is bounded, the
function will be locally minimized over the entire set
of parameters.®

PRINCIPALS

The ALS algorithm PRINCIPALS, developed by
Young et al.,'® minimizes the loss function (Eq. (4)).
The algorithm accepts single nominal, ordinal, and
numerical variables, and alternates between two
estimation steps. The first step estimates the model
parameters Z and A for ordinary PCA, and the second
estimates the data parameter X* for optimally scaled
data.

For the initialization of PRINCIPALS, the initial
data X*(© are determined under the measurement
restrictions for each variable and are then standardized
to satisfy restriction (Eq. (3)). The observed data X
may be used as X" () after centering and normalizing
each column of X under restriction (Eq. (3)). Given the
initial data X* (0, PRINCIPALS iterates the following
two steps:

e Model estimation step: Obtain A/+1) and Z¢+1)
from

1 T T +
A _ xx@OT7(®) (Z(t) Z(t)) ,

Z @+ _ xr(0) A D) (A(t+1)TA(t+1)>+ ;

where the superscript + indicates the Moore-
Penrose inverse of a matrix.
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e Optimal scaling step: Obtain X*(+1 by
separately estimating X for each j. Compute

X(t+1) Z(t+1)A(t+1)T Compute Y(t+l)
Y(t+1) (GTG) 1GT)’Z(;+1)
(Al )

Recompute Y;tH) by monotone and linear regression
on ordinal and numerical variables, respectively.
Compute X*(Hl) GY(tH) and scale X*(tH) by
centering and normahzmg

In the Model estimation step, A1 and
Z®+1 are found by solving the singular value
decomposition of X* or the eigen-decomposition
of X* (t)Tx>:- (t)/n'16
Singular value decomposition of X'*): From the
Eckart-Young decomposition theorem,! we obtain

7D —y,, At

=V,D!2

where U, is an 7z xr matrix of the r normalized
eigenvectors of X* W TX* ) corresponding to the
dominant eigenvectors, V, is a p x » matrix of the r
normalized eigenvectors of X* (1 X* T corresponding
to the » dominant eigenvectors, and D, is an rxr
diagonal matrix of eigenvalues of X* (/TX* (1),
Eigen-decomposition ~ of  X*#TX*®/: By

solving
X*(t)Tx*(t)
[7} A = AD,
n
subject to ATA=I,, we obtain A**1) and compute
Zt+1) X+ OA+T),
PRINCALS

The ALS algorithm PRINCALS, developed by Gifi,’
can handle multiple nominal variables in addition to
the single nominal, ordinal, and numerical variables
accepted in PRINCIPALS. We denote the set of mul-
tiple variables by Jy and the set of single variables
having single nominal and ordinal scales and numeri-
cal measurements by Js. From Egs. (5) and (8), the loss
function to be minimized by PRINCALS is given by

ZUH/ (Z,W)) + Z"Hi (Z,W)).

j€edm jeds

OH (Zs W) =

For the initialization of PRINCALS, we determine the
initial values of Z and W. The matrix Z'? is initialized
with random numbers under restriction (Eq. (6)), and

-
W is obtained as Wy = G; (G[G;)  G]Z). For
each variable j € Js, Y;-‘(O) is defined as the first K;
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successive integers under the normalization restriction.
The vector A; is initialized as AD = 707G, Y*(O)
and rescaled to unit length. Given these initial Values,
PRINCALS iterates the following steps'®:

e Estimation of category quantifications: Compute

Wl(t“) forj=1,...,p as
Wt = (G]G)"'GZ®
S .

e For the multiple variables in Jy, set
W(Hl) to the estimate of multiple category
quantlﬁcatlons

e For the single variables in Jg, compute A/(.t“)

as

EHDT _ DT (AT O vOT (T \yv®
A=W (Gi Gf)Yi /Y (Gf G’>Yf'

and Y;Hl) as

t+1 t+1 t+1)T t+1 t+1)T
YD 2 WD AT p D AGHDT,

Recompute Y(HD by monotone and linear

regression on ordinal and numerical variables,
respectively. Update W/(Hl) Y<t+1)A(t+1) for
ordinal and numerical variables.

e Update of object scores: Compute Z*+1) by

/ 1

Column-wise center and orthonormalize Z*+1),

SOFTWARE

The development of the ALS algorithm with optimal
scaling for nonlinear PCA was initiated by Young
et al.'® Their study resulted in PRINCIPALS. SAS
provided the procedure PRINQUAL based on
PRINCIPALS.'> The result from PRINQUAL is
displayed in the output data set and PRINQUAL
produces an iteration history table.!* A biplot in PCA
can be also available for graphical representation of
the results.

De Leeuw and his coworkers followed up Young
et al’s study of the ALS algorithm with optimal
scaling and developed PRINCALS. This algorithm
is implemented in CATPCA in SPSS.!"! CATPCA can
display biplots of object scores and quantification
scores of variables in a joint space. These plots reveal
the relationships among objects and variables.

© 2013 Wiley Periodicals, Inc. 459
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TABLE 1 | Guttman-Bell data: Variables and Objects

wires.wiley.com/compstats

Description of the Variables
Variable 1 = Intensity of interaction
Variable 2 = Frequency of interaction
Variable 3 = Feeling of belong
Variable 4 = Physical proximity
Variable 5 = Formality of relationship

1 = slight; 2 = low; 3 = moderate; 4 = high

1 = slight; 2 = nonrecurring; 3 = infrequent; 4 = frequent
1 = none; 2 = slight; 3 = variable; 4 = high

1 = distant; 2 = close

1 = no relationship; 2 = formal; 3 = informal

Classification of the Object Variable 1 Variable 2 Variable 3 Variable 4 Variable 5
Crowd 1 1 1 2 2
Modern community, Neighborhood 2 3 2 2 2
Public 1 2 2 1 1
Primary Group 4 4 4 2 3
Mob 4 1 4 2 3
Secondary Group 3 3 3 1 2
Audience 2 1 2 2 2
TABLE 2 | Category Quantifications
W, W, W3 W, Ws
—0.12 0.03 0.05 0.17 —0.12 0.03 —0.16 —0.18 —0.13 0.02
—0.09 0.02 —0.04 —0.13 —0.10 0.02 0.06 0.07 —0.10 0.02
—0.09 0.02 —0.04 -0.13 —0.10 0.02 0.26 —0.05
.26 —0.06 —0.04 —0.13 0.26 —0.06
TABLE 3 | Single Quantifications TABLE 5 | Object Scores
Y, Y, Y3 Y, Ys Classification of the Object Z V43
—0.27 —0.44 —0.27 —0.60 —0.30 Crowd —0.07 0.23
-0.21 0.33 —0.23 0.24 —0.22 Modern Community, Neighborhood —0.08 0.00
—0.21 0.33 —-0.23 0.60 Public -0.17 -0.17
.60 0.33 0.60 Primary Group 0.25 —0.17
Mob 0.27 0.06
Secondary Group —0.15 —0.18
TABLE 4 | Component Loadings Audience ~0.05 0.23
Al A; A; A/ Al
0.44 —0.12 0.43 0.26 0.44
~0.10 ~0.40 —0.11 0.29 —008  EXAMPLES

The ALS algorithm HOMALS was designed for
homogeneity analysis and is provided in the R package
homals.* HOMALS corresponds to PRINCALS for
all variables that are multiple nominal. The homals
package allows for the restrictions imposed by the
measurement level of the variables and is applicable to
nonlinear PCA. It also offers various plotting options
for representing the results.

460 © 2013 Wiley Periodicals, Inc.

We illustrate nonlinear PCA of two data. The homals
package is used to estimate the parameters and plot
the results.

Example 1: Guttman-Bell Data

The Guttman-Bell data® shown in Table 1 deal with
attitudes of social groups consisting of seven objects
and five variables with a total of 17 categories. We
assume that variables 1-3 are single ordinal, and
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Category plot for intensity of interation
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FIGURE 1| Plot of category quantifications: Intensity of interaction.

Category plot for formality of relationship
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FIGURE 2| Plot of category quantifications: Formality of
relationship.

variables 4 and 5 are single nominal. Thus, the first
three variables impose rank-one and monotonicity
restrictions, and the last two variables impose rank-
one restrictions.

Tables 2-5 report the parameter estimates for
r=2. The results are plotted in Figures 1-5.

Figures 1 and 2 plot the category quantifications
of Intensity of interaction and Formality of
relationship. In our assumption, Intensity of
interaction and Formality of relationship are ordinal
and nominal variables, respectively. These points are
given in the first and fifth columns of Table 2.
The rank-one restrictions ensure that the category

Volume 5, November/December 2013

Alternating least squares in nonlinear principal components

Loadings plot

Physical proximity
N
o
N o
S o Formality of relationship
g intensity of
(7] interaction
£ Feeling of belong
a o
PR
|
~
o . )
| Frequency of interaction

T T T T T
-0.2 0.0 0.2 0.4 0.6

Dimension 1

FIGURE 3| Plot of component loadings.

Plot object scores
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FIGURE 4| Plot of object scores.

quantifications of both variables lie on a straight line
through the origin. As shown in the plot and table,
categories 2 and 3 in Intensity of interaction are
assigned the same value. The same results appear for
Frequency of interaction and Feeling of belong. The
cause of these results is the monotonicity restrictions
on the variables.

Figure 3 plots the component loadings in Table
4. This figure shows vectors going in three different
directions from the origin. The first group is Physical
proximity; the second is Formality of relationship,
Intensity of interaction, and Feeling of belong; and
the third is Frequency of interaction.
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Joint plot
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FIGURE 5| Joint plot of object scores and category quantifications.

TABLE 6 | GALO Data: Variables

Description of the variables
Variable 1 = Gender: M = Male, F = Female
Variable 2 = 1Q: 1-9
Variable 3 = Advice:

Agr = Agricultural; Ext = Extended
primary education;

Gen = General; Grls = Secondary school
for girls;

Man = Manual, including housekeeping;

None = No further education;
Uni = Pre-University

Variable 4 = SES: LoWC = Lower white collar;

MidWC = Middle white collar;
Prof = Professional, Managers;
Shop = Shopkeepers;
Skil = Schooled labor; Unsk = Unskilled
labor

Variable 5 = School:  1-37

Figure 4 plots the object scores Z in Table
5. The two object groups, Crowd and Audience,
and Public and Secondary Group, have similar
response patterns, whereas the other objects Modern
Community, Neighborbood, Primary Group, and
Mob have unique response patterns.

Figure 5 is the joint plot of Z and W. The
plot shows that Modern Community, Neighborhood
is associated with categories 1, 2, and 3 of Intensity of
interaction and Feeling of belong and with categories
1 and 2 of Formality of relationship. We find that
Public and Secondary Group are also associated with
category 1 of Physical Proximity.

462 © 2013 Wiley Periodicals, Inc.
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Plot object scores
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FIGURE 7| Plot of object scores labeled by SES.

Example 2: GALO Data
The GALO data'? shown in Table 6 were collected
from 1290 school children in the sixth grade of
elementary schools in the city of Groningen (the
Netherlands). The variables are Gender, IQ, Advice,
SES, and School. IQ (original range 60-144) is divided
into nine ordered categories and the schools are
enumerated from 1 to 37. In the analysis, we use four
variables (variables 1 to 4) and assume that variables
1, 3, and 4 are nominal, and variable 2 is ordinal.
Rank-one restrictions are imposed on variables 1, 3,
and 4, and rank-one and monotone restrictions are
imposed on variable 2.

In Figure 6, which plots the object scores, we
identify six object groups. Figure 7 plots the object
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scores labeled by SES. This figure indicates that each
group is characterized by SES: Shop and Unsk for
Group 1; MidWC for Groups 2 and 4; Prof, Shop,
and Skil for Group 3; Prof and Skil for Group 3;
LoWC for Group 6. We also observe that, for each
group, the object scores with the same categories in
SES lie along a straight line.

Conclusion

Nonlinear PCA is applicable to complicated multi-
variate data structures consisting of nominal, ordinal,
and numerical variables. The use of optimal scaling
for quantifying the qualitative data makes PCA appli-
cable to combined quantitative and qualitative data.
Because mixed data are often collected in statistical
surveys, the ability of nonlinear PCA to handle such
data confers a distinct advantage and broadens the
research possibilities in many scientific disciplines.
Nonlinear PCA finds the component scores and
loadings of ordinary PCA and optimally scaled
data, and moreover finds category quantifications of
variables. The joint plot facilitates interpretation of
the relationships among objects and variables. An
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available alternative to nonlinear PCA is multiple
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