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Abstract We present a Markov chain Monte Carlo (MCMC) method for generating

Markov chains using Markov bases for conditional independence models for a four-

way contingency table. We then describe a Markov basis characterized by Markov

properties associated with a given conditional independence model and show how to

use the Markov basis to generate random tables of a Markov chain. The estimates of

exact p-values can be obtained from random tables generated by the MCMC method.

Numerical experiments examine the performance of the proposed MCMC method in

comparison with the χ2 approximation using large sparse contingency tables.

Keywords Markov basis – Markov property – sparse contingency table – Markov

chain Monte Carlo

1 Introduction

The use of asymptotic tests relied on large-sample approximations to the sample dis-

tributions of test statistics is unreliable when a contingency table is large and sparse.

Exact tests evaluating statistical significance using p-values are preferred over asymp-

totic tests based on large sample approximations, such as χ2 approximations. However,

computing exact p-values is harder compared with computing asymptotic p-values,

since the former requires enumeration of all contingency tables conditionally on the set
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of marginals. For a detailed review of exact inference for contingency tables, refer to

Agresti [1][2].

When the exact p-value can not be calculated due to the infeasibility of completely

enumerating all contingency tables, MCMC is a valuable tool for evaluating p-values.

Diaconis and Sturmfels [10] proposed an algebraic algorithm for constructing MCMC

for sampling from conditional distributions. The algorithm generates random tables

by the use of Markov bases computed using Gröbner bases. Further, MCMC with

a Markov basis generates an irreducible Markov chain. Dobra [11] presented explicit

formulae that identify Markov bases for decomposable graphical models and showed

an algorithm for generating Markov bases dynamically. Forster et al. [13] used Gibbs

sampling to perform exact tests for goodness of fit of the all-two-way interaction model

for a 2d contingency table. Caffo and Booth [4] suggested a different MCMC approach

that computes p-values by making use of importance sampling with rounded normal

deviates. Although Gibbs sampling and the MCMC method using importance sampling

enable the computation of exact p-values in various log-linear models for multi-way

tables, the Markov chains generated may be reducible.

Our aim is to generate a Markov basis characterized by the Markov properties

of Lauritzen [17] associated with a given conditional independence model for a four-

way contingency table and develop a MCMC method for generating random tables

by using the Markov basis. In Section 2, we describe conditional independence models

for four-way contingency tables and show the Markov properties that form conditional

independence structures for these models. In Section 3, we define the Markov bases for

conditional independence models. In Section 4, we present an algorithm for generating

a random table by employing the Markov basis. In Section 5, we give MCMC with

the Markov basis for generating random tables of a Markov chain. The estimates of

exact p-values can be calculated from random tables generated by MCMC. Numerical

experiments in Section 6 examine the performance of the proposed MCMC method in

comparison with χ2 approximation. In Section 7, we present our concluding remarks.

2 Conditional independence models for a four-way contingency table

Consider an I × J ×K × L contingency table n = {nabcd} with non-negative integer

cell entries formed from categorical variables A, B, C and D. To denote conditional

independence models for n, we use notations pertaining to their minimal sufficient

statistics. For example, [ABC][BCD] denotes the model with conditional independence

between A and D given (B, C). Using the notation of Dawid [9], its relationship can

be expressed as A ⊥ D|(B, D). The minimal sufficient statistics for [ABC][BCD] are

marginals nABC = {nabc+} and nBCD = {n+bcd}, where

nabc+ =
∑

d

nabcd, n+bcd =
∑

a

nabcd.

For a four-way contingency table, there exist four conditional independence models,

as described in Darroch et al. [8]. Table 1 shows these conditional independence models

and their interpretations. In Table 2, the conditional independence relationships for

these models in the form of Markov properties are presented. Figure 1 illustrates the

graphical representations for the conditional independence models in Table 1.
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Lauritzen [17] and Sundberg [18] showed that the exact conditional distributions of

n for M1 to M4 have hypergeometric distributions conditionally on the sets of marginal

constraints:

πM1(n) =

∏
a,b,c nabc+!

∏
b,c,d n+bcd!∏

b n+bc+!
∏

a,b,c,d nabcd!
, (1)

πM2(n) =

∏
a,b nab++!

∏
b,c,d n+bcd!∏

b n+b++!
∏

a,b,c,d nabcd!
, (2)

πM3(n) =

∏
a,b nab++!

∏
b,c n+bc+!

∏
c,d n++cd!∏

b n+b++!
∏

c n++c+!
∏

a,b,c,d nabcd!
, (3)

πM4(n) =

∏
a,b nab++!

∏
b,c n+bc+!

∏
b,d n+b+d!

{∏
b n+b++!

}2 ∏
a,b,c,d nabcd!

. (4)

Then, the MCMC method draws random tables from the above exact conditional

distributions and is applied to estimate exact p-values from the generated random

tables.

3 Markov bases for conditional independence models

Let T (M) denote the set of all tables having the marginal totals of sufficient statistics

of model M . To generate table n′ ∈ T (M), we use the data swapping technique of

Dalenius and Reiss [7] such that cell entries are moved from one cell to the other,

while the fixed marginals of sufficient statistics of M are left unchanged. A data swap

associated with n′ ∈ T (M) is an array f = {fabcd} with fabcd ∈ {0,±1,±2, . . .} for all

a, b, c, d.

Definition 1 A move f = {fabcd} for model M is a data swap that preserves the

marginals of sufficient statistics of M .

Then, we have n + f ∈ T (M) if and only if nabcd + fabcd ≥ 0 for all a, b, c, d. From

the marginal constraints for M1 to M4, we have

M1 :
∑

d

∑

a,b,c

fabcd =
∑

a,b,c

fabc+ = 0,
∑

d

nabcd + fabcd = nabc+, (5)

∑
a

∑

b,c,d

fabcd =
∑

b,c,d

f+bcd = 0,
∑

a

nabcd + fabcd = n+bcd, (6)

M2 :
∑

a

∑

b,c,d

fabcd =
∑

b,c,d

f+bcd = 0,
∑

a

nabcd + fabcd = n+bcd, (7)

∑

c,d

∑

a,b

fabcd =
∑

a,b

fab++ = 0,
∑

c,d

nabcd + fabcd = nab++, (8)

M3 :
∑

c,d

∑

a,b

fabcd =
∑

a,b

fab++ = 0,
∑

c,d

nabcd + fabcd = nab++, (9)

∑

a,d

∑

b,c

fabcd =
∑

b,c

f+bc+ = 0,
∑

a,d

nabcd + fabcd = n+bc+, (10)
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∑

a,b

∑

c,d

fabcd =
∑

c,d

f++cd = 0,
∑

a,b

nabcd + fabcd = n++cd, (11)

M4 :
∑

c,d

∑

a,b

fabcd =
∑

a,b

fab++ = 0,
∑

c,d

nabcd + fabcd = nab++, (12)

∑

a,d

∑

b,c

fabcd =
∑

b,c

f+bc+ = 0,
∑

a,d

nabcd + fabcd = n+bc+, (13)

∑
a,c

∑

b,d

fabcd =
∑

b,d

f+b+d = 0,
∑
a,c

nabcd + fabcd = n+b+d. (14)

Definition 2 A Markov basis M is a finite collection of moves that preserve the fixed

marginals of the sufficient statistics of model M . For any two tables n,n′ ∈ T (M),

there exists a sequence of moves f (1), . . . , f (R) ∈M such that

n′ − n =

R∑
r=1

f (r) and n +

R′∑
r=1

f (r) ∈ T (M),

for 1 ≤ R′ ≤ R.

Diaconis and Sturmfels [10] showed that there exists a Markov basis for T (M), which

allows the construction of a Markov chain on T (M).

A move f = {fabcd} in which two entries are equal to 1, two entries are equal to

−1 and the remaining entries are 0 is called a primitive move. Diaconis and Sturmfels

[10] described a Markov basis that is the set of primitive moves for the independence

model for a two-way contingency table. Dobra [11] also showed that the set of primitive

moves is a Markov basis for the class of decomposable graphical models.

4 Algorithm for generating random tables conditionally on the fixed

marginals

Consider an I × J ×K contingency table formed from variables X, Y and Z. Let n =

{nxyz} be the table of counts with non-negative integer cell entries. We assume that X

and Z are conditionally independent given Y , i.e., X ⊥ Z|Y . The fixed marginals for

the conditional independence model [XY ][Y Z] are nXY = {nxy+} and nY Z = {n+yz}.
By employing Theorem 3.1 of Diaconis and Sturmfels [10], the Markov basis for

the model can be defined by the set of primitive moves with the following marginal

constraints:
∑

z

∑
x,y

fxyz =
∑
x,y

fxy+ = 0,
∑

z

nxyz + fxyz = nxy+,

∑
x

∑
y,z

fxyz =
∑
x,y

f+yz = 0,
∑

x

nxyz + fxyz = n+yz .

The algorithm for generating a random table n′ ∈ T ([XY ][Y Z]) is described below.

Algorithm: Random table generation for [XY ][Y Z]

Step 1: Select an index y0 in {1, . . . , J}.
Step 2: Choose indices x1, x2, z1, z2 such that 1 ≤ x1 < x2 ≤ I and 1 ≤ z1 < z2 ≤ K.
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Step 3: Define move f = {fxyz} by

fxyz =





1, if (x, z) ∈ {(x1, z1), (x2, z2)} with y0 fixed,

−1, if (x, z) ∈ {(x2, z1), (x1, z2)} with y0 fixed,

0, otherwise.

Step 4: Generate n′ from

n′ = n + εf ,

where ε is 1 or −1 with probability 1/2 each.

All conditional independence structures for M1 to M4 can be transformed into the

form X ⊥ Z|Y , as described below. Thus, Random table generation for [XY ][Y Z]

provides an essential algorithm for producing random tables in T (M1) to T (M4) and

enables the generation of random tables for each model. The set {f (r)} in a Markov

basis for each of M1 to M4 is given by the set of primitive moves conditionally on the

marginal constraints specified by Equations (5) to (14).

In the following subsections, we show how the Random table generation algorithm

is applied to produce a move f in a Markov basis for each of M1 to M4. In Appendix,

we describe the procedure for selecting indices in Steps 1 and 2 of the Random table

generation algorithm.

4.1 Model M1 : [ABC][BCD]

We identify pair (B, C) with new variable Y that has the categories defined by all

possible combinations of values of B and C, and set X = A and Z = D. By denoting

M1 as [XY ][Y Z], we can generate a random table in T (M1) by applying the Random

table generation algorithm.

4.2 Model M2: [AB][BCD]

Similar to model M1 above, we define new variable Y with KL combinations of cat-

egories of C and D. We denote M2 as [XY ][Y Z] by setting X = A and Y = B and

apply the Random table generation algorithm to produce a random table in T (M2).

4.3 Model M3: [AB][BC][CD]

As indicated in Table 2, there exist two Markov properties associated with M3: (i)

M31 : A ⊥ (C, D)|B and (ii) M32 : (A, B) ⊥ D|C. We set

(X, Y, Z) =

{
(A, B, (C, D)) for M31,

((A, B), C, D) for M32.

Then, we uniformly generate a move with probability proportional to the number of

moves associated with M31 and M32. Weights w31 and w32 represent the number of

moves for M31 and M32, respectively, and are calculated by

w31 =

{
2×

(
I

2

)
×

(
KL

2

)
× J

}
, w32 =

{
2×

(
IJ

2

)
×

(
L

2

)
×K

}
.



6

Thus, we have p31 = w31/(w31 + w32) and p32 = 1− p31.

We select M31 or M32 with probability p3 = (p31, p32) and apply the Random

table generation algorithm to generate a random table in T (M3).

4.4 Model M4: [AB][BC][BD]

For M4, we have three Markov properties: (i) M41 : A ⊥ C|(B, D), (ii) M42 : A ⊥
D|(B, C) and (iii) M43 : C ⊥ D|(A, B). We set

(X, Y, Z) =





(A, (B, D), C) for M41,

(A, (B, C), D) for M42,

(C, (A, B), D) for M43.

To generate a move uniformly, we select one model from M41, M42 and M43 with

probability p4 = (p41, p42, p43). Weights for these models are calculated by

w41 =

{
2×

(
I

2

)
×

(
K

2

)
× JL

}
, w42 =

{
2×

(
I

2

)
×

(
L

2

)
× JK

}
,

w43 =

{
2×

(
K

2

)
×

(
L

2

)
× IJ

}
.

Thus, we have p41 = w41/(w41 + w42 + w43), p42 = w42/(w41 + w42 + w43) and

p43 = 1− (p41 + p42).

We generate a move in a Markov basis for the model chosen by probability p4 and

obtain a random table in T (M4) by using the Random table generation algorithm.

5 MCMC for the computation of p-values

In the two sections below, we present the Metropolis-Hastings (M-H) algorithm of

Hastings [16] for generating Markov chains, followed by our approach to computing

the corresponding p-values.

5.1 Metropolis-Hastings algorithm for generating a Markov chain

Diaconis and Sturmfels [10] showed the M-H algorithm for generating a Markov chain

using a Markov basis and then proved that the Markov chain is an irreducible, aperiodic

Markov chain with stationary distribution π.

The M-H algorithm for generating random tables of a Markov chain on T ([XY ][Y Z])

is presented below.

Algorithm: M-H algorithm for [XY ][Y Z]

Step 1: Initialize the iteration counter r = 1 and set n(0) as the initial contingency

table.

Step 2: Generate candidate table n′ = n(r−1) + εf by using the Random table gener-

ation algorithm.



7

Step 3: If all cell entries of n′ are non-negative integers, accept n′ as the next table

n(r) with probability

α(n′,n(r−1)) = min

{
π(n′)

π(n(r−1))
, 1

}
, (15)

otherwise retain n(r−1) and n(r) = n(r−1).

Step 4: Increment counter r and return to Step 2.

We apply the M-H algorithm presented above to generate {n(r)} of a Markov chain on

each of T (M1) to T (M4).

When n′ is drawn from hypergeometric distributions (1) to (4), the ratio π(n′)/π(n(r−1))

of Equation (15) involves only four cell counts associated with indices y0, x1, x2, z1,

z2 selected in Steps 1 and 2 of the Random table generation algorithm. For example,

this algorithm generates table n′ ∈ T (M1) in which the four cell counts in n(r−1) are

modified as

n′x1y0z1 = n′a1b0c0d1
= n

(r−1)
a1b0c0d1

+ ε, n′x2y0z1 = n′a2b0c0d1
= n

(r−1)
a2b0c0d1

− ε,

n′x1y0z2 = n′a1b0c0d2
= n

(r−1)
a1b0c0d2

− ε, n′x2y0z2 = n′a2b0c0d2
= n

(r−1)
a2b0c0d2

+ ε.

Then, the ratio π(n′)/π(n(r−1)) is given by

π(n′)
π(n(r−1))

=
n

(r−1)
x1y0z1 ! n

(r−1)
x2y0z1 ! n

(r−1)
x1y0z2 ! n

(r−1)
x2y0z2 !

n′x1y0z1 ! n′x2y0z1 ! n′x1y0z2 ! n
′
x2y0z2 !

=
n

(r−1)
a1b0c0d1

! n
(r−1)
a2b0c0d1

! n
(r−1)
a1b0c0d2

! n
(r−1)
a2b0c0d2

!

n′a1b0c0d1
! n′a2b0c0d1

! n′a1b0c0d2
! n′a2b0c0d2

!

=





n
(r−1)
a2b0c0d1

n
(r−1)
a1b0c0d2

(n
(r−1)
a1b0c0d1

+ 1)(n
(r−1)
a2b0c0d2

+ 1)
, when ε = 1,

n
(r−1)
a1b0c0d1

n
(r−1)
a2b0c0d2

(n
(r−1)
a2b0c0d1

+ 1)(n
(r−1)
a1b0c0d2

+ 1)
, when ε = −1.

5.2 Computation of p-values

As the measure of the goodness of fit of model M , we use the Pearson chi-squared

statistic

χ2(n,m) =
∑

a,b,c,d

(nabcd −mabcd)2

mabcd
,

where m = {mabcd} is the set of fitted values under M . It follows that the p-value for

M can be computed from

p =
∑

{n′∈T (M)}
I
{
χ2(n′,m) ≥ χ2(n,m)

}
πM (n′), (16)

where I{·} denotes an indicator function. However, the computation of the exact p-

value in Equation (16) is not feasible when complete enumeration of contingency tables



8

in T (M) is very large or more complicated. The MCMC method is applicable to cir-

cumvent this enumeration problem.

Let {n(r)}0≤r≤(S+R) be random tables in T (M) generated by the M-H algorithm

described above. After discarding the first S tables as burn-in, the MCMC p-value can

be obtained by

p̂ =
1

R

S+R∑

r=S+1

I
{

χ2(n(r),m) ≥ χ2(n,m)
}

. (17)

6 Numerical experiments

We provide two numerical examples: the first is that exact results obtained by complete

enumeration are available for comparison, and the second is that MCMC is the only

feasible method for exact inference. The computation is performed by using the R

language.

Example 1 Table 3 is a study of nonmetastatic osteosarcoma by Goorin et al. [15].

The response shown in the table indicates whether the subject achieved a three-year

disease-free interval.

For M1 and M2, the exact p-values are calculated from complete enumeration of

T (M1) and T (M2) using MIMWIN of Edwards [12]. When exact p-values are unknown, we

use the Monte Carlo estimation method from the importance sampling (IS) algorithm

of Booth and Butler [3] instead of exact computations. The Monte Carlo p-values

for M3 and M4 are obtained from 1,000,000 random tables by using the R package

exactLoglinTest of Caffo [5], an implementation of the IS algorithm. We compare the

p-values from the χ2 approximation and the proposed MCMC approach with the exact

or Monte Carlo p-values.

The MCMC method described in Section 4 generates 1,000,000 random tables with

10, 000 tables as burn-in. To evaluate the accuracy of a MCMC p-value, we compute

its standard error using the batch means method of Geyer [14]. When dividing random

tables {n(r)}S+1≤r≤S+R1R2 into R1 batches each of size R2, the MCMC p-value for

the k-th batch is calculated as

p̂k =
1

R2

S+kR1∑

r=S+(k−1)R1+1

I
{

χ2(n(r),m) ≥ χ2(n,m)
}

.

The variance estimate of p̂ is obtained from

Var =
1

R1 − 1

R1∑

k=1

(p̂k − p̂)2

and the batch means estimate of the MCMC standard error is calculated from
√

Var/R1.

In our experiments, we set R1 = 100 and R2 = 10, 000. The values in parenthesis are

the standard errors of the MCMC p-values.

Results are shown in Table 4. As shown in the table, MCMC p-values are in good

agreement with the exact and Monte Carlo p-values, while the asymptotic p-values

using the chi-squared distribution differ greatly. Figure 2 shows histograms of values
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{χ2(n(r),m)} of the Pearson chi-squared statistics for M1 to M4. For models other than

M3, we see substantial discrepancies between the asymptotic and MCMC estimated

exact distributions. They indicate that the asymptotic χ2 approximation is unreliable

for sparse data.

Example 2 Table 5 shows abortion opinion data from Christensen [6]. Observations are

classified by four factors: Race (A), Sex (B), Opinion (C) and Age (D). For C, three

different opinions are possible: a ”Yes” answer supports legalized abortion; a ”No”

answer opposes legalized abortion; an ”Undecided” answer is undecided. Because the

contingency table contains many small expected values and the sample size is large,

the computation of exact p-values obtained by enumeration is not feasible.

Table 6 presents the asymptotic and MCMC p-values for M1 to M4. The MCMC

p-values for each model are obtained from 1,000,000 simulated tables after a burn-in of

10,000 tables. Standard error values of p are shown in parentheses. The small MCMC

p-value for M4 may lack accuracy, because a MCMC estimate from 1,000,000 tables

guarantees at most three-digit precision.

7 Concluding remarks

In this paper, we proposed the use of MCMC with a Markov basis for estimating exact

p-values for the conditional independence models for a four-way contingency table.

A Markov basis is required to generate random tables with fixed marginals specified

by a conditional independence model. We defined the Markov basis characterized by

the Markov properties associated with a given conditional independence model. Then,

we developed an algorithm for generating primitive moves in the Markov basis and

presented a MCMC method for producing a Markov chain by using the Markov basis.

Results from our first experiment demonstrated that the proposed MCMC method

finds the estimates of exact p-values in close agreement with exact p-values. Our second

experiment illustrated that the MCMC method is feasible for exact inference when the

asymptotic χ2 approximation is unreliable and the exact computation of p-values by

complete enumeration is not feasible.

In the future, we intend to develop a MCMC method for decomposable graphi-

cal models in multi-way contingency tables by extending our MCMC method with a

Markov basis characterized by Markov properties.

Acknowledgements The authors would like to thank the editor and a referee for their valu-
able comments and helpful suggestions.

Appendix

We describe the procedure for selecting indices in Steps 1 and 2 of the Random table

generation algorithm for each model.

Algorithm: Random table generation for M1

Step 1: Select y0 = (b0, c0) in {1, . . . , J} × {1, . . . , K}.
Step 2: Choose x1, x2 in {1, . . . , I} and z1,z2 in {1, . . . , L}.
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Algorithm: Random table generation for M2

Step 1: Select y0 in {1, . . . , J}.
Step 2: Choose x1, x2 in {1, . . . , I} and z1 = (c1, d1), z2 = (c2, d2) in {1, . . . , K} ×

{1, . . . , L}.

Algorithm: Random table generation for M3

Determine M31 or M32 with probability p3. If M31 is selected, set (X, Y, Z) = (A, B, (C, D)),

else (X, Y, Z) = ((A, B), C, D).

Step 1: Select y0:

– for M31, y0 in {1, . . . , J},
– for M32, y0 in {1, . . . , K}.

Step 2: Choose x1, x2, z1, z2:

– for M31, x1, x2 in {1, . . . , I} and z1 = (c1, d1), z2 = (c2, d2) in {1, . . . , K} ×
{1, . . . , L},

– for M32, x1 = (a1, b1), x2 = (a2, b2) in {1, . . . , I} × {1, . . . , J} and z1, z2 in

{1, . . . , L}.

Algorithm: Random table generation for M4

Select one model among M41, M42 and M43 with probability p4. Set

(X, Y, Z) =





(A, (B, D), C), when choosing M41,

(A, (B, C), D), when choosing M42,

(C, (A, B), D), when choosing M43.

Step 1: Select y0:

– for M41, y0 = (b0, d0) in {1, . . . , J} × {1, . . . , L},
– for M42, y0 = (b0, c0) in {1, . . . , J} × {1, . . . , K},
– for M43, y0 = (a0, b0) in {1, . . . , I} × {1, . . . , J}.

Step 2: Choose x1, x2, z1, z2:

– for M41, x1, x2 in {1, . . . , I} and z1, z2 in {1, . . . , K},
– for M42, x1, x2 in {1, . . . , I} and z1, z2 in {1, . . . , L},
– for M43, x1, x2 in {1, . . . , K} and z1, z2 in {1, . . . , L}.
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Table 1 Conditional independence models for a four-way contingency table

Model Interpretation

M1: [ABC][BCD] A is conditional independent of D given (B, C)
M2: [AB][BCD] A is conditional independent of (C, D) given B
M3: [AB][BC][CD] A is conditional independent of (C, D) given B, and

(A, B) is conditional independent of D given C
M4: [AB][BC][BD] A, C and D are all conditional independent given B

Table 2 Markov properties for the conditional independence models

Model Markov property

M1: [ABC][BCD] A ⊥ D|(B, C)
M2: [AB][BCD] A ⊥ (C, D)|B
M3: [AB][BC][CD] A ⊥ (C, D)|B and (A, B) ⊥ D|C
M4: [AB][BC][BD] A ⊥ C|(B, D), A ⊥ D|(B, C) and C ⊥ D|(A, B)
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Table 3 Study of nonmetastatic osteosarcoma from Goorin et al. [15]

Lymphocytic Osteoblastic Disease-free(D)
Sex(A) Infiltration(B) Pathology(C) Yes No
Female High No 3 0

Yes 4 0
Low No 5 0

Yes 5 4
Male High No 2 0

Yes 1 0
Low No 3 2

Yes 6 11

Table 4 Asymptotic p-values versus estimated exact p-values

p-value
Model df χ2 value asymptotic MCMC exact
M1 : [ABC][BCD] 4 3.471 0.4821 0.2066 (0.0013) 0.2061
M2 : [AB][BCD] 6 4.748 0.5765 0.3649 (0.0023) 0.3674
M3 : [AB][BC][CD] 8 12.250 0.1404 0.1291 (0.0017) 0.1250∗
M4 : [AB][BC][BD] 8 9.267 0.3202 0.1036 (0.0018) 0.1017∗

∗ indicates a Monte Carlo p-value from the IS algorithm of Booth and Butler [3].

Table 5 Abortion opinion data from Christensen [6]

Age(D)
Race(A) Sex(B) Opinion(C) 18-25 26-35 36-45 46-55 56-65 66+
White Male Yes 96 138 117 75 72 83

No 44 64 56 48 49 60
Und 1 2 6 5 6 8

Female Yes 140 171 152 101 102 111
No 43 65 58 51 58 67
Und 1 4 9 9 10 16

Nonwhite Male Yes 24 18 16 12 6 4
No 5 7 7 6 8 10
Und 2 1 3 4 3 4

Female Yes 21 25 20 17 14 13
No 4 6 5 5 5 5
Und 1 2 1 1 1 1

Table 6 Goodness-of-fit statistics and MCMC p-values

p-value
Model df χ2 value asymptotic MCMC
M1 : [ABC][BCD] 30 23.10 0.8112 0.8370 (0.0043)
M2 : [AB][BCD] 34 54.67 0.0138 0.0195 (0.0015)
M3 : [AB][BC][CD] 49 59.62 0.1422 0.1505 (0.0068)
M4 : [AB][BC][BD] 54 114.39 3.156× 10−6 9.6× 10−5 (7.7× 10−5)
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Model M2: [AB][BCD]
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Model M3: [AB][BC][CD]
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Model M4: [AB][BC][BD]

D
en

si
ty

0 5 10 15 20 25 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Fig. 2 Histograms drawn by MCMC samples of the chi-squared statistics for M1 to M4


