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Abstract. Principal components analysis (PCA) is a descriptive multivariate method for
analyzing quantitative data. For PCA of a mixture of quantitative and qualitative data, quan-
tification of qualitative data requires obtaining optimal scaling data and using ordinary PCA.
The extended PCA, including such quantification, is called non-linear PCA. Then, the alter-
nating least squares (ALS) algorithm is used as the quantification method. However, the ALS
algorithm for non-linear PCA of large data requires many iterations and much computation
time due to its linear convergence. We provide a new acceleration method for the ALS algo-
rithm using the vector ε (vε) and Graves-Morris (GM) algorithms. Both acceleration algorithms
speed up the convergence of a linearly convergent sequence generated by the ALS algorithm.
Acceleration of the ALS algorithm can be performed in two stages: 1) the vε algorithm gener-
ates an accelerated sequence of the ALS sequence and 2) the convergence of the vε accelerated
sequence is accelerated using the GM algorithm. Thus, we expect that, by accelerating the
convergence of the vε accelerated sequence, the GM algorithm improves the overall computa-
tional efficiency of the ALS algorithm. Numerical experiments examine the performance of the
two-stage acceleration for non-linear PCA.

Keywords. non-linear PCA, alternating least squares algorithm, acceleration of convergence,
vector ε algorithm, Graves-Morris algorithm

1 Introduction

Principal components analysis (PCA) is a descriptive multivariate method commonly used for
analyzing quantitative data. For PCA of a mixture of quantitative and qualitative data, quan-
tification of qualitative data requires obtaining optimal scaling data and using ordinary PCA.
The extended PCA, including such quantification, is called non-linear PCA, see Gifi [4]. The
existing algorithms for non-linear PCA are PRINCIPALS of Young et al. [9] and PRINCALS
of Gifi [4], in which the alternating least squares (ALS) algorithm is utilized. This algorithm
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alternates between quantification of qualitative data for optimal scaling and computation of
ordinary PCA of optimal scaling data.

Application of non-linear PCA to very large data sets and variable selection problems requires
numerous iterations and large computation time for convergence of the ALS algorithm, because
the algorithm’s convergence speed is linear. For example, in PCA based on a subset of variables
for qualitative data of Mori et al. [7], the ALS algorithm requires a much larger number of
iterations and longer computation time to search for a reasonable subset. For an iterative
algorithm that generates a linearly convergent sequence such as the ALS algorithm, there exist
several convergence acceleration algorithms, see Brezinski and Zaglia [3]. Kuroda et al. [6]
proposed an acceleration algorithm for the convergence of the ALS sequence using the vector
ε (vε) algorithm of Wynn [10]. During iterations of the vε accelerated ALS algorithm, the
vε algorithm generates an accelerated sequence of optimal scaling data estimated by the ALS
algorithm. Numerical experiments demonstrated that the vε acceleration greatly speeds up the
convergence of the ALS sequence of the estimated optimal scaling data.

In this paper, we provide a new acceleration method for the ALS algorithm using the vε and
Graves-Morris (GM) algorithms [5]. Both algorithms accelerate the convergence of a linearly
convergent sequence. Acceleration of the ALS algorithm can be performed in two stages: the
first stage using the vε algorithm generates an accelerated sequence of the ALS sequence and the
second stage accelerates the convergence of the vε accelerated sequence using the GM algorithm.

The paper is organized as follows. We briefly describe the ALS algorithm for non-linear
PCA and introduce the vε acceleration for the ALS algorithm proposed by Kuroda et al. [6]
in Section 2. Section 3 gives the GM algorithm and its convergence properties. The two-stage
acceleration for the ALS algorithm is described in Section 4. Numerical experiments in Section
5 examine the performance and properties of the two-stage acceleration for PRINCIPALS. In
Section 6, we present our concluding remarks.

2 ALS algorithm for non-linear PCA and vε acceleration

Computation of non-linear PCA

Let X = (X1 X2 · · · Xp) be an n× p matrix of n observations on p quantitative variables and
be columnwise standardized. In PCA, X is linearly transformed into a substantially smaller set
of uncorrelated variables and are approximated by the following bilinear form:

X̂ = ZA�, (1)

where Z = (Z1 Z2 · · · Zr) is an n×r matrix of n component scores on r (1 ≤ r ≤ p) components,
and A = (A1 A2 · · · Ar) is a p × r matrix consisting of the eigenvectors of X�X/n and
A�A = Ir. Then, we determine model parameters Z and A such that

θ = tr(X− X̂)�(X− X̂) = tr(X− ZA�)�(X− ZA�) (2)

is minimized for the prescribed r components.
For no-linear PCA with optimal scaling, quantification of qualitative data requires obtaining

optimal scaling data and using ordinary PCA. To quantify Xj of qualitative variable j with
Kj categories, the vector is coded using an n ×Kj indicator matrix Gj with entries g(j)ik = 1
if object i belongs to category k, and g(j)ik′ = 0 if object i belongs to some other category
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k′( �= k), i = 1, . . . , n and k = 1, . . . ,Kj . Then, the optimally scaled vector X∗
j of Xj is given by

X∗
j = Gjαj , where αj is a Kj × 1 score vector for categories of Xj . Let X

∗ = (X∗
1 X∗

2 · · · X∗
p)

be an n× p matrix of optimally scaled observations to satisfy restrictions

X∗�1n = 0p and diag

[
X∗�X∗

n

]
= Ip, (3)

where 1n and 0p are vectors of ones and zeros of length n and p, respectively. In the presence
of qualitative variables, the optimization criterion (2) is replaced by

θ∗ = tr(X∗ − X̂)�(X∗ − X̂) = tr(X∗ − ZA�)�(X∗ − ZA�). (4)

In non-linear PCA, we determine the optimal scaling parameterX∗, in addition to estimating
Z and A.

ALS algorithm for non-linear PCA: PRINCIPALS of Young et al.

The ALS algorithm for non-linear PCA alternates between ordinary PCA and optimal scaling,
and minimizes θ∗ of Equation (4) under restriction (3). Then, θ∗ is to be determined by model
parameters Z and A and optimal scaling parameter X∗, by updating each of the parameters in
turn, keeping the others fixed. We use PRINCIPALS of Young et al. [9] as the ALS algorithm
for non-linear PCA.

For the initialization, the observed data X may be used as initial data X∗(0) after it is
standardized to satisfy restriction (3). For given initial data X∗(0), PRINCIPALS iterates the
following steps:

Algorithm 2.1 (PRINCIPALS).

Step1 Model parameter estimation step: Obtain A(t) by solving

[
X∗(t)�X∗(t)

n

]
A = ADr, (5)

where A�A = Ir and Dr is an r × r diagonal matrix of eigenvalues, and the superscript
(t) indicates the t-th iteration. Compute Z(t) from Z(t) = X∗(t)A(t).

Step2 Optimal scaling step: Calculate X̂(t+1) = Z(t)A(t)� from Equation (1). Find X∗(t+1)

such that

X∗(t+1) = argmin
X∗ tr(X∗ − X̂(t+1))�(X∗ − X̂(t+1))

for fixed X̂(t+1) under measurement restrictions on each of the variables. Scale X∗(t+1) by
columnwise centering and normalizing.
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vε acceleration for PRINCIPALS

The vε algorithm of Wynn [10] is a method for accelerating the convergence of a slowly conver-
gent vector sequence and works effective for linearly convergent sequences. It is known that the
maximum speed of convergence of the vε algorithm is superlinear.

Let {Y(t)}t≥0 = {Y(0),Y(1),Y(2), . . . } be a linearly convergent sequence generated by an
iterative computational procedure and let {Ẏ(t)}t≥0 = {Ẏ(0), Ẏ(1), Ẏ(2), . . . } be the accelerated
sequence of {Y(t)}t≥0. We denote �Y(t) = Y(t+1) − Y(t) and define the inverse of vector Y
by [Y]−1 = Y /〈Y,Y〉 , where 〈·, ·〉 is the inner product of vectors. Then, the vε algorithm
generates {Ẏ(t)}t≥0 by using

Ẏ(t−1) = Y(t) +

[[
�Y(t)

]−1 −
[
�Y(t−1)

]−1
]−1

. (6)

When {Y(t)}t≥0 converges to a limit point Y(∞) of {Y(t)}t≥0, it is known that, in many cases,
{Ẏ(t)}t≥0 generated by the vε algorithm converges to Y(∞) faster than {Y(t)}t≥0.

Kuroda et al. [6] proposed the vε acceleration for the ALS algorithm for non-linear PCA.
The vε acceleration algorithm speeds up the convergence of the ALS sequence. Numerical ex-
periments demonstrated that its speed of convergence is significantly faster than that of the ALS
algorithm. We assume that {X∗(t)}t≥0 generated by PRINCIPALS converges to a limit point
X∗(∞). Then, vε accelerated PRINCIPALS (vε-PRINCIPALS) produces a fast convergent se-
quence {Ẋ∗(t)}t≥0 of {X∗(t)}t≥0. The procedure of vε-PRINCIPALS of Kuroda et al. [6] iterates
the following two steps:

Algorithm 2.2 (vε-PRINCIPALS).

Step1 PRINCIPALS step: Compute model parameters A(t) and Z(t) and determine optimal
scaling parameter X∗(t+1).

Step2 vε acceleration step: Calculate Ẋ∗(t−1) using {X∗(t−1),X∗(t),X∗(t+1)} from the vε algo-
rithm:

vecẊ∗(t−1) = vecX∗(t) +
[[

�vecX∗(t)
]−1 −

[
�vecX∗(t−1)

]−1
]−1

,

where vecX∗ = (X∗�
1 X∗�

2 · · · X∗�
p )� and check the convergence by∥∥∥�vecẊ∗(t−2)

∥∥∥2 < δ,

where δ is a desired accuracy.

Before starting of the iteration of vε-PRINCIPALS, we perform the PRINCIPALS step twice
to obtain X∗(0) and X∗(1). When {Ẋ∗(t)}t≥0 generated by vε-PRINCIPALS converges to X∗(∞),
the estimate of X∗ can be obtained from the final value of {Ẋ∗(t)}t≥0. The estimates of Z and A
can then be calculated immediately from the estimate of X∗ in the Model parameter estimation
step of PRINCIPALS.

Note that Ẋ∗(t−1) obtained in the vε acceleration step is not used as the estimate X∗(t+1) at
the (t + 1)-th iteration of the PRINCIPALS step. Thus, vε-PRINCIPALS speeds up the con-
vergence of {X∗(t)}t≥0 without affecting the convergence properties of ordinary PRINCIPALS.
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3 Graves-Morris acceleration algorithm

Graves-Morris [5] studied generalization of Aitken’s δ2 of Aitken [1] for vector cases. The devel-
opment of the GM algorithm is motivated by its numerical performance.

For a linearly convergent sequence {Y(t)}t≥0, the GM algorithm generates an accelerated
sequence {Ÿ(t)}t≥0 of {Y(t)}t≥0 by using the following equation:

Ÿ(t−1) = Y(t+1) −
〈�Y(t),�Y(t)

〉〈�Y(t),�2Y(t)
〉�Y(t+1), (7)

where �2Y(t) = �Y(t+1)−�Y(t). Then, Equation (7) takes a hybrid form of the vector-valued
Padé approximants. The Padé approximants are a particular type of rational approximation
of functions and are a very important tool for deriving a fast convergent sequence. Baker and
Graves-Morris [2] provided the detailed description of Padé approximants and the derivation of
the GM algorithm.

We study the convergence of the GM algorithm. We consider the transformation such as

Ÿ(t−1) = Y(t+1) +
�Y(t+1)

1− 〈�Y(t+1),�Y(t)〉
〈�Y(t),�Y(t)〉

. (8)

We suppose the following:

ASSUMPTION A: Y(t) → Y(∞) as t → ∞ in the sense of the norm.

The assumption means that there exists a constant 0 < K < 1 such that

‖�Y(t+1)‖ ≤ K‖�Y(t)‖.
Lemma 3.1. We suppose ASSUMPTION A. Then, we have Ÿ(t) → Y(∞) as k → ∞.

Proof. From Equation (8), we have

‖Ÿ(t−1) −Y(t+1)‖ =

∥∥∥∥∥∥∥∥∥
�Y(t+1)

1− 〈�Y(t+1),�Y(t)〉
〈�Y(t),�Y(t)〉

∥∥∥∥∥∥∥∥∥
≤ ‖�Y(t+1)‖

1−
∣∣∣∣∣〈�Y(t+1),�Y(t)〉
〈�Y(t),�Y(t)〉

∣∣∣∣∣
.

From ASSUMPTION A, we have limt→∞ ‖�Y(t+1)‖ = 0 and |〈�Y(t+1),�Y(t)〉/〈�Y(t),�Y(t)〉| �=
1, since

|〈�Y(t+1),�Y(t)〉| ≤ ‖�Y(t+1)‖‖�Y(t)‖ ≤ K‖�Y(t)‖2 = K〈�Y(t),�Y(t)〉.
Then, we have the lemma.

Below, we show the convergence of the GM algorithm.

Theorem 3.2. Suppose that a vector sequence {Y(t)}t≥0 fulfills ASSUMPTION A. Then, the
vector sequence {Ÿ(t)}t≥0 generated by Equation (7) has the same accumulate point as {Y(t)}t≥0.
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Proof. From

〈�Y(t),�2Y(t)〉 = 〈�Y(t),�Y(t+1) −�Y(t)〉
= 〈�Y(t),�Y(t+1)〉 − 〈�Y(t),�Y(t)〉,

we have 〈�Y(t),�Y(t)
〉〈�Y(t),�2Y(t)
〉 =

1

〈�Y(t),�Y(t+1)〉
〈�Y(t),�Y(t)〉 − 1

.

Equation (7) can be written by Equation (8). From Lemma 3.1, we complete the proof.

4 Two-stage acceleration for PRINCIPALS

We show the two-stage acceleration for PRINCIPALS. The acceleration can be performed to
obtain a fast convergent sequence of {X∗(t)}t≥0: the first stage generates an accelerated sequence
{Ẋ∗(t)}t≥0 of {X(t)}t≥0 by the vε algorithm, and the GM algorithm in the second stage finds an
accelerated sequence of {Ẋ∗(t)}t≥0. We denote the accelerated sequence obtained from the GM
algorithm by {Ẍ∗(t)}t≥0. Note that the first stage acceleration corresponds to vε-PRINCIPALS.
In our experiments, the vε algorithm generates a fast linearly convergent sequence by improving
the rate of convergence but rarely converges superlinearly. When {Ẋ∗(t)}t≥0 is a linearly conver-
gent sequence, we expect that the GM algorithm generates the accelerated sequence {Ẍ∗(t)}t≥0

of {Ẋ∗(t)}t≥0 such that it converges faster than {Ẋ∗(t)}t≥0.
We refer to the procedure of the two-stage acceleration as vεGM-PRINCIPALS. By al-

ternating among the PRINCIPAL and two acceleration steps, vεGM-PRINCIPALS generates
{X∗(t)}t≥0, {Ẋ∗(t)}t≥0, and {Ẍ∗(t)}t≥0 independently and alternatively.

Algorithm 4.1 (vεGM-PRINCIPALS).

Step1 PRINCIPALS step: Compute model parameters A(t) and Z(t) and determine optimal
scaling parameter X∗(t+1).

Step2 vε acceleration step: Calculate Ẋ∗(t−1) using {X∗(t−1),X∗(t),X∗(t+1)} from the vε algo-
rithm:

vecẊ∗(t−1) = vecX∗(t) +
[[

�vecX∗(t)
]−1 −

[
�vecX∗(t−1)

]−1
]−1

.

Step3 GM acceleration step: Calculate Ẍ∗(t−1) using {Ẋ∗(t−1), Ẋ∗(t), Ẋ∗(t+1), Ẋ∗(t+2)} from the
GM algorithm:

vecẌ∗(t−1) = vecẊ∗(t+1) −
〈
�vecẊ(t),�vecẊ(t)

〉
〈
�vecẊ(t),�2vecẊ(t)

〉�vecẊ∗(t+1),

and check the convergence by ∥∥∥�vecẌ∗(t−2)
∥∥∥2 < δ,

where δ is a desired accuracy.

COMPSTAT 2012 Proceedings



Masahiro Kuroda, Michio Sakakihara, Yuichi Mori and Masaya Iizuka 7

We show the sequences generated by three steps and the numbers of iterations when the vε
and GM acceleration steps start:

PRINCIPALS step {X∗(t)}t≥0 : X∗(0) X∗(1) X∗(2) X∗(3) X∗(4) X∗(5) X∗(6) · · ·
vε acceleration step {Ẋ∗(t)}t≥0 : Ẋ∗(0) Ẋ∗(1) Ẋ∗(2) Ẋ∗(3) Ẋ∗(4) · · ·
GM acceleration step {Ẍ∗(t)}t≥0 : Ẍ∗(0) Ẍ∗(1) · · ·
The GM acceleration step starts after executing the vε acceleration step thrice. Thus, to obtain
Ẍ∗(0), the GM acceleration step requires the subsequence {Ẋ∗(t)}0≤t≤3 in the vε acceleration
step and {X∗(t)}0≤t≤5 in the PRINCIPALS step.

During iterations of vεGM-PRINCIPALS, the value of Ẍ obtained in the GM acceleration
step is not used as the estimate at the next PRINCIPALS step similar to vε-PRINCIPALS.
Therefore, the GM acceleration step does not affect the convergence of PRINCIPALS. We ob-
tain the estimates of X∗, Z, and A in the same manner as vε-PRINCIPALS when vεGM-
PRINCIPALS terminates.

5 Numerical experiment

We study how much faster vεGM-PRINCIPALS converges than PRINCIPALS and vε-PRINCIPALS.
All computations are performed with the statistical package R [8] executing on Intel Core i5 3.3
GHz with 4 GB RAM. CPU times (in seconds) taken are measured by the function proc.time1.
For all experiments, δ for convergence of vε-PRINCIPALS and vεGM-PRINCIPALS is set to
10−8, and PRINCIPALS terminates when |θ(t+1) − θ(t)| < 10−8, where θ(t) is the t-th update
of θ calculated from Equation (4). Each algorithm also stops when the number of iterations
exceeds 100,000. We apply these algorithms to a random data matrix of 100 observations on
20 variables with 10 levels and measure the number of iterations and CPU time for r = 2. The
procedure is replicated 100 times.

Table 1 shows the summary of statistics of the numbers of iterations and CPU times of these
algorithms from 100 simulated data. The table shows that vεGM-PRINCIPALS considerably
reduces the number of iterations and the CPU time. Table 2 shows the summary of statistics of
the iteration and CPU time speed-ups for comparing the speed of convergence of PRINCIPALS
with those of two acceleration algorithms. The iteration speed-up is defined as the number
of iterations required for PRINCIPALS divided by the number of iterations required for the
acceleration algorithm. The CPU time speed-up is calculated similarly to the iteration speed-
up. The values of the iteration and CPU time speed-ups indicate that PRINCIPALS requires
3.2 to 4.4 times greater number of iterations and 2.7 to 3.9 times longer CPU time than those
of vεGM-PRINCIPALS.

We compare the performance of vεGM-PRINCIPALS with that of vε-PRINCIPALS. Figure
1 shows the boxplots of the iteration and CPU time speed-ups of two acceleration algorithms.
Table 2 and Figure 1 indicate that the GM acceleration step finds an accelerated sequence of
{Ẋ∗(t)}t≥0 in the vε acceleration step, and thus the two-stage acceleration improves the overall
computational efficiency of PRINCIPALS. Figure 2 presents the scatter plots of the iteration
and CPU time speed-ups of vεGM-PRINCIPALS for those of vε-PRINCIPALS. The figure
shows that vεGM-PRINCIPALS always converges faster than vε-PRINCIPALS and accelerates
the convergence of {X∗(t)}t≥0 more than vε-PRINCIPALS whenever vε-PRINCIPALS converges

1Times are typically available to 10 msec.
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faster. For the case that the values of the iteration and CPU time speed-ups of vε-PRINCIPALS
are more than 4, vεGM-PRINCIPALS gives higher values. Figure 3 shows the scatter plots of
the iteration and CPU time speed-ups of vεGM-PRINCIPALS for the number of iterations
of PRINCIPALS. The figure indicates that vεGM-PRINCIPALS works well to accelerate the
convergence more than vε-PRINCIPALS for the larger number of iterations of PRINCIPALS.
Thus, it is clear that the two-stage acceleration is very advantageous.

6 Concluding remarks

In this paper, we proposed two-stage acceleration for the ALS algorithm for non-linear PCA. The
first stage generates the accelerated sequence {Ẋ∗(t)}t≥0 of {X∗(t)}t≥0 using the vε algorithm and
the next stage accelerates the convergence of {Ẋ∗(t)}t≥0 using the GM algorithm. Then, both
acceleration algorithms find fast convergent sequences without modification of the estimation
equations of the ALS algorithm. Therefore, the two-stage acceleration speeds up the convergence
of {Ẋ∗(t)}t≥0 while still preserving the stable convergence property of the ALS algorithm. The
vε and GM algorithms are fairly simple computational procedures, and their computational
costs are less expensive than those for matrix inversion and for solving the eigenvalue problem
in the ALS algorithm for non-linear PCA.

The numerical experiments employing simulated data demonstrated that the two-stage ac-
celeration improves the computational efficiency of the vε acceleration of Kuroda et al. [6],
and then significantly speeds up the convergence of {X∗(t)}t≥0 in terms of the number of iter-
ations and computation time. In this paper, we described the two-stage acceleration only for
PRINCIPALS, but it is applicable to PRINCALS as well.
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The number of iterations CPU time
PRINCIPALS vε vεGM PRINCIPALS vε vεGM

Min 181.0 65.0 57.00 3.510 1.410 1.310
1st Qu. 332.5 103.8 91.25 6.258 2.145 1.992
Median 475.5 154.5 134.00 8.780 3.035 2.730
Mean 605.9 193.8 166.37 11.130 3.789 3.361
3rd Qu. 740.0 241.0 207.75 13.340 4.620 4.062
Max. 3595.0 820.0 615.00 67.250 15.690 12.170

Table 1. Summary of statistics of the numbers of iterations and CPU times of PRINCIPALS,
vε-PRINCIPLAS (vε) and vεGM-PRINCIPALS (vεGM) from 100 simulated data (r = 2).

Iteration speed-up CPU time speed-up
vε vεGM vε vεGM

Min 1.383 1.414 1.356 1.356
1st Qu. 2.729 3.175 2.577 2.748
Median 3.175 3.677 2.895 3.209
Mean 3.201 3.758 2.953 3.332
3rd Qu. 3.773 4.377 3.422 3.895
Max. 6.076 9.038 5.548 8.451

Table 2. Summary of statistics of the number of iterations and CPU time speed-ups of vε-
PRINCIPLAS (vε) and vεGM-PRINCIPALS (vεGM) from 100 simulated data (r = 2).
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Figure 1. Boxplots of iteration and CPU time speed-ups of vε-PRINCIPALS (vε) and vεGM-
PRINCIPALS (vεGM) from 100 simulated data (r = 2).
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Figure 2. Scatter plots of iteration and CPU time speed-ups of vεGM-PRINCIPALS (vεGM)
for vε-PRINCIPALS(vε) from 100 simulated data (r = 2).
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Figure 3. Scatter plots of iteration and CPU time speed-ups of vε-PRINCIPALS (©) and
vεGM-PRINCIPALS (�) for the number of iterations of PRINCIPALS from 100 simulated data
(r = 2).
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