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Summary. The EM algorithm has been a general and popular algorithm for find-
ing maximum likelihood estimates (MLEs) from incomplete data since Dempster,
Laird and Rubin [DLR77]. However, it is often criticized that the convergence of
the EM algorithm is slow when the proportion of missing data is high. Kuroda and
Sakakihara [KS05] proposed the ε-accelerated EM algorithm that is the fairly simple
computational procedure and speeds up the convergence of EM sequences using the
vector ε algorithm of Wynn [Wy62]. In this paper, we use the ε-accelerator for the
EM and ECM algorithms for log-linear models with missing data. Moreover we apply
the Aitken δ2 method of Aitken [A26] to these algorithms. The Aitken δ2 method
also speeds up the convergence of EM sequences. Then we provide the convergence
properties of both accelerators.
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1 Introduction

The EM algorithm has been a general and popular algorithm for finding maximum
likelihood estimates (MLEs) from incomplete data since Dempster, Laird and Ru-
bin [DLR77]. However, it is often criticized that the convergence of the EM algorithm
is slow when the proportion of missing data is high. In order to improve the speed
of convergence of the EM algorithm, various algorithms incorporating optimization
algorithms with faster convergence speed have been proposed, see Krishnan and
McLachlan [MK97]. Applying the accelerator based on the Newton-type algorithms,
it requires the computation of a matrix inversion at each iteration. Then its compu-
tation is likely to become rapidly complicated as the number of parameters increases,
and is also expected numerical instabilities. Therefore the Newton-type accelerators
for the EM algorithm are lost the attractive features of the EM algorithm, such as
its stability, flexibility and simplicity.
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Kuroda and Sakakihara [KS05] proposed the ε-accelerated EM algorithm that
is the fairly simple computational procedure and speeds up the convergence of EM
sequences using the vector ε algorithm of Wynn [Wy62], and demonstrated that the
algorithm produces a sequence to converge to the MLEs much faster than the EM
sequence in the numerical experiments.

In this paper, we apply the ε-accelerated EM algorithm to the maximum likeli-
hood estimation for log-linear models with missing data. Moreover we propose the
acceleration of the EM algorithm using the Aitken δ2 method of Aitken [A26] to ac-
celerate the convergence of scalar sequences of iterates. For some log-linear models,
there are no closed-form to compute the MLEs. The ECM algorithm of Meng and
Rubin [MR93] is also used to the models. Then the ε- and Aiken δ2-accelerators are
applicable to the ECM algorithms.

In Section 2 we introduce log-linear models for contingency tables, and, in Section
3, show the EM and ECM algorithms for the log-linear models with missing data.
In Section 4, we provide the the ε- and Aitken δ2-accelerations for the EM and
ECM algorithms, and give the fundamental theories for the convergence of these
acceleration algorithms.

2 Log-linear models with missing data

Let XV = (X1, . . . , Xk) be a k-dimensional discrete random vector and V =
{1, . . . , k} be the index set of XV . We also denote a finite set of values of Xi

as Ωi, i ∈ V , and the space of possible values of XV as the Cartesian product
ΩV =

Q
i∈V Ωi. Associated with each i ∈ V , we shall have a random variable Xi

taking values in a sample space Ωi. For a subset A ⊆ V , we write XA for {Xi|i ∈ A}
and ΩA =

Q
i∈A Ωi.

Let pV (xV ) denote the cell probability of XV = xV ∈ ΩV and let θ =
{pV (xV )|xV ∈ ΩV } be the set of cell probabilities. The marginal probability of
XA = xA ∈ ΩA for A ⊂ V can be also calculated by

pA(xA) =
X

xV \A

pV (xV ),

where the symbol “\” denotes the operator of a difference set.
In this paper, we consider the class of hierarchical log-linear models for contin-

gency tables in the case of multinomial sampling. An hierarchical log-linear model
is specified by a generating class E = {e1, . . . , eM} which is a class of variable sets
in minimal interaction terms, and e ∈ E is called a generator. For example, consider
the log-linear model with the generating class E = {{1, 2}, {1, 3}, {2, 3}}. Then the
log-linear model is represented by

log pV (xV ) = u + u1(x{1}) + u2(x{2}) + u3(x{3})

+ u12(x{1,2}) + u12(x{1,3}) + u23(x{2,3}). (1)

In the cases with missing data, the completely classified data are represented
in the full contingency tables and the partially classified data are represented in
supplemental tables. These tables are identified with an observing pattern T =
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{V, t1, . . . , tS} where each configuration t is a set of observed variables for a sup-
plemental table. The cell counts of the contingency table classified by observing
variables Xt are also denoted as {nt(xt)|xt ∈ Ωt}. Assume that the missing data
are missing at random in the sense that Rubin [R76].

3 The EM and ECM algorithms for log-linear models

with missing data

We show the EM algorithm to find the MLE of the parameter vector θ for the log-
linear model with a generating class E and an observing pattern T = {V, t1, . . . , tS}.

For the case that the MLE of θ is given by closed-forms, the EM algorithm repeats
the following two steps till the convergence to the desired accuracy is obtained:

• E-step: Calculate the expected marginal cell counts {ñe(xe)} for each generator
e ∈ E:

ñe(xe)
(r) =

X
xV \e

"
nV (xV ) +

SX
i=1

pV (xV )(r)

pti
(xti

)(r)
nti

(xti
)

#
.

• M-step: Calculate marginal probabilities {pe(xe)
(r+1)|xe ∈ Ωe} for each gener-

ator e ∈ E:

pe(xe)
(r+1) =

ñe(xe)
(r)

N
,

where N =
P

t∈T

P
xt∈Ωt

nt(xt). And Obtain θ(r+1) from

pV (xV )(r+1) =

Q
e∈E pe(xe)

(r+1)Q
c∈C(pc(xc)(r+1))ν(c)

,

where C = (c1, . . . , cM−1) is the set of separators of E and ν(c) is an index that
counts the number of times of each separator c in C.

It is known that certain log-linear models do not have closed-form MLEs, such as
the no three-interaction model for a three-way contingency table given by equation
(1). Then the ECM algorithm of Meng and Rubin [MR93] is applicable to the models.
The ECM algorithm finds the MLEs by replacing a complicated M-step of the EM
algorithm with several computationally simpler CM-step:

• CM-step: Obtain θ(r+1) by performing the Iterative Proportional Fitting proce-
dure of Bishop, Fienberg and Holland [BFH77] as follows:

pV (xV )(r+i/M) =
pV (xV )(r+(i−1)/M)

pei
(xei

)(r+(i−1)/M)

ñei
(xei

)(r)

N
,

for i = 1, 2, . . . , M .

4 Acceleration algorithms

In order to accelerate the convergence of the EM and ECM algorithms, we incorpo-
rate the ε- and Aitken δ2-accelerators into them. The first accelerator is the vector
ε algorithm of Wynn [Wy62] and accelerates the convergence of vector sequences.
The second accelerator is the Aitken δ2 method of Aitken [A26] and accelerates the
convergence of scalar sequences.
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4.1 The ε acceleration

Let θ be a d-dimensional vector. Assume that a sequence {θ(r)}r≥0 converges to a
vector θ∗ as r → ∞. Define the inverse [x]−1 of a vector x by

[x]−1 =
x

‖x‖2
, ‖x‖2 =< x, x >

in which < x, x > is the scalar product of x by itself.
In general, the vector ε algorithm for a sequence {θ(r)}r≥0 starts with

ε
(r,−1) = 0, ε

(r,0) = θ
(r)

,

and then generates a vector ε(r,k+1) by

ε
(r,k+1) = ε

(r,k−1) +
h
ε
(r+1,k) − ε

(r,k)
i−1

, l = 0, 1, 2, . . . . (2)

For the case of k + 1 = 2l + 2, we have the iteration form such as

ε
(r,2l+2) = ε

(r+1,2l) +

�h
ε
(r,2l) − ε

(r+1,2l)
i−1

+
h
ε
(r+2,2l) − ε

(r+1,2l)
i−1

−
h
ε
(r+2,2l−2) − ε

(r+1,2l)
i−1
�−1

from equation (2), see Brezinski and Zaglia [BZ91]. For practical implementation, we
apply the case of l = 0 to equation (??). Then, from initial conditions ε(r,0) = θ(r)

and ε(r,−2) = ∞ of Brezinski and Zaglia [BZ91], the iteration becomes as follows:

ε
(r,2) = θ

(r+1) +

�h
θ
(r) − θ

(r+1)
i−1

+
h
θ
(r+2) − θ

(r+1)
i−1
�−1

. (3)

To accelerate the convergence of the EM and ECM algorithms, we apply the
ε-acceleration process to the sequence {θ(t)}t≥0 generated by the M- or CM-steps:

• ε-acceleration: Generate a vector θ̇(r) by

θ̇
(r) = θ

(r+1) +

�h
θ
(r) − θ

(r+1)
i−1

+
h
θ
(r+2) − θ

(r+1)
i−1
�−1

from equation (1) and check the convergence to a desired accuracy.

Then the acceleration algorithm via the vector ε algorithm does not improve the
E- and M-steps or the CM-step but accelerates the convergence of the sequence
{θ(r)}r≥0 using the ε-acceleration process.

4.2 Convergence of the ε-acceleration process

The EM algorithm is a first-order successive substitution method and then implicitly
defines a map θ → M(θ) from the parameter space to itself such that

θ
(r) = M(θ(r−1)).
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Expanding M(θ(r)) in a first term of a Taylor series of about θ(r−1), the following
approximation holds:

θ
(r+1) − θ

(r) = M(θ(r)) − M(θ(r−1))
.
= J

(r−1)(θ(r) − θ
(r−1)),

where J(r−1) is the Jacobian matrix for the mapping M(θ) evaluated at θ(r−1).
Suppose θ(r) converges to a stationary point θ∗. For r large enough, we have

J(r) = J∗ and thus

θ
(r+1) − θ

(r) .
= J

∗(θ(r) − θ
(r−1)), (4)

where J∗ is J evaluated at a stationary point θ∗. Then J∗ determines the rate of
convergence of the EM algorithm near θ∗. In fact, equation (4) becomes

θ
(r+1) − θ

(r) .
= λ(θ(r) − θ

(r−1)), (5)

because the largest eigenvalue λ of J∗ dominates the convergence, see Louis [L82].
Kuroda and Sakakihara [KS05] provided the convergence of the ε-acceleration

process.

Theorem 1. The sequence {θ̇(r)}r≥0 generated by the ε-acceleration process for the
EM sequence converges to the stationary point θ∗ of the EM sequence.

Like the EM algorithm, equation (5) also holds for each iteration of the ECM
algorithm when r tends to be large. Thus Theorem 1 is valid for ECM sequences.

Corollary 1. The sequence {θ̇(r)}r≥0 generated by the ε-acceleration process for the
ECM sequence converges to the stationary point θ∗ of the ECM sequence.

For the convergence and acceleration properties of the vector ε algorithm, Brezin-
ski and Zaglia [BZ91] has completely described only for special classes of vector
sequences. Thus the mathematical consideration of the ε-acceleration process is less
trivial.

4.3 The Aitken δ2-acceleration

Let a scalar sequence {φ(r)}r≥0 converges to a limit φ∗. For a scalar sequence
{φ(r)}r≥0, the Aitken δ2 algorithm generates a sequence {φ̇(r)}r≥0 by

φ̇
(r) = φ

(r) −
(φ(r+1) − φ(r))2

φ(r+2) − 2φ(r+1) + φ(r)
. (6)

Note that the ε algorithm for scalar sequences is identical to the Aitken δ2 algorithm.
For the sake of simplicity, we re-denote θ = {pV (xV )|xV ∈ ΩV } as θ =

(θ1, θ2, . . . , θd) where θd = 1−
Pd−1

j=1 θj . We can find an alternative parameterization
ϕ = ϕ(θ) such as

ϕ = (φ1, φ2, . . . , φd) =

 
θ1,

θ2

1 − θ1
, . . . ,

θd−1

1 − (
P

j<d−1 θj)
,

θd

1 − (
P

j<d−1 θj)

!
.

(7)
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Then the MLE of ϕ(θ) is ϕ(θ̂) that is the function evaluated at the MLE θ̂ of θ,
because φ(θ) is a one-one function of θ. For the parameterization of ϕ = ϕ(θ) in
equation (7), the property of the invariance of MLEs holds.

In order to accelerate the convergence of the EM or ECM sequence {θ(r)}r≥0,
the Aitken δ2-acceleration process generates a sequence {ϕ̇(r)}r≥0:

• Aitken δ2-acceleration: Generate a vector ϕ̇(r) = (φ̇
(r)
i )i=1,...,d from

φ̇
(r)
i = φ

(r)
i −

(φ
(r+1)
i − φ

(r)
i )2

φ
(r+2)
i − 2φ

(r+1)
i + φ

(r)
i

, i = 1, 2, . . . , d,

and check the convergence to a desired accuracy.

After the convergence of the Aitken δ2 acceleration, we compute θ̇ from the limit
ϕ̇∗ of {ϕ̇(r)}r≥0 using

θ̇ = (θ̇1, θ̇2, . . . , θ̇d−1, θ̇d)

=

 
φ̇
∗
1, φ̇

∗
2(1 − φ̇

∗
1), . . . , φ̇

∗
d−1

d−2Y
j=1

(1 − φ̇
∗
j ), φ̇

∗
d

d−2Y
j=1

(1 − φ̇
∗
j )

!
.

4.4 Convergence of the Aitken δ2-acceleration process

Next we give the convergence properties of the Aitken δ2 acceleration for the EM
and ECM algorithms. For a scalar sequence {φ̇(r)}r≥0 generated by equation (6),
Traub [T64] provided the following lemma:

Lemma 1. If {φ(r)}r≥0 converges to a stationary point φ∗ as r → ∞, then {φ̇(r)}r≥0

generated by equation (6) converges to the same stationary point φ∗.

Then we have the following lemma:

Lemma 2. If {ϕ(r)}r≥0 is a convergent vector sequence to the vector ϕ∗, then

||ϕ(r) − ϕ∗||∞ converges to zero as r → ∞, moreover |φ
(r)
i − φ∗

i | converges to zero
as r → ∞, where ‖ϕ‖∞ = maxi{|φi|}.

From Lemmas 1 and 2, we obtain the result:

Theorem 2. If ϕ(r) = (φ
(r)
i )i=1,...,d is a convergent vector sequence to the vector

ϕ∗ = (φ∗
i )i=1,...,d and the vector sequence ϕ̇(r) = (φ̇

(r)
i )i=1,...,d is generated by equa-

tion (6), then ϕ̇(r) → ϕ∗ as r → ∞.

Furthermore, from the invariance of MLEs of ϕ = ϕ(θ) in (7) and Theorem 2,
we can give the following result:

Theorem 3. If the EM sequence {θ(r)}r≥0 converges to the MLE θ̂, then θ̇ obtained
by equation (??) is θ̂.

To compare the speed of convergence of the Aitken δ2 acceleration for the EM al-
gorithm with that of the EM algorithm, we provide the following notion of Brezinski
and Zaglia [BZ91].
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Definition 1. Let {φ̂(r)}r≥0 be a scalar sequence obtained by applying an extrapo-
lation method to {φ(r)}r≥0. Assume that limt→∞ φ(r) = limt→∞ φ̂(r) = φ∗. If

lim
t→∞

|φ̂(r) − φ∗|

|φ(r) − φ∗|
= 0,

then we say that the sequence {φ̂(r)}r≥0 converges to φ∗ faster than {φ(r)}r≥0 or the
extrapolation method accelerates the convergence of {φ(r)}r≥0.

Traub [T64] proved that Aitken δ2 method accelerates the convergence of
{φ(r)}r≥0 in the sense that

lim
r→∞

|φ̇(t) − φ∗|

|φ(t+2) − φ∗|
= 0. (8)

The facts of Theorem 3 and equation (8) give us the validity of the Aitken δ2

acceleration for the EM algorithm.
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