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Abstract: In this paper, we discuss an efficient Bayesian computational
method when observed data are incomplete in discrete graphical models.
The data augmentation (DA) algorithm of Tanner and Wong [8] is applied
to finding the posterior distribution. Utilizing the idea of local computation,
it is possible to improve the DA algorithm. We propose a local computation
DA (LC-DA) algorithm and evaluate its computational efficiency.

1 Introduction

A graphical model is characterized by conditional independence relationships
among variables of a statistical model. Graphical models are broadly used
in various fields to describe complex statistical models and to specify the
multivariate distributions, see Whittaker [9] and Edwards [4].

For a large graphical model, it is rare to obtain complete observed data.
When observed data are incomplete, it is extremely difficult to obtain the
exact posterior distribution for a graphical model and the calculation may
take a long time when observed data are moderately large. To overcome this
computational difficulty, various algorithms related to graph structures are
proposed, see Cowell et al. [1]. In this paper, we apply the data augmenta-
tion (DA) algorithm of Tanner and Wong [8] to approximating the posterior
distribution of a graphical model. Then,

incorporating the idea of local computation into the DA algorithm, it is
possible to reduce the computational effort. We propose a local computation
DA (LC-DA) algorithm and evaluate its computational efficiency.

In Section 2, we show the exact Bayesian computation to find the posterior
distribution for a discrete graphical model with missing data. In Section 3,
instead of doing the infeasible exact computation, we give the DA algorithm
to approximate the posterior distribution. In Section 4, we present the LC-
DA algorithm. Section 5 discusses the efficiency of the LC-DA algorithm
from the viewpoint of computational complexity.
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2 Graphical model with missing data and exact
Bayesian computation

Let V denote the set of vertices in a graph and XV = {Xi | i ∈ V } be the set
of discrete random variables. Associated with each vertex i ∈ V , a random
variable Xi takes values in a sample space Ωi. For a subset A ⊆ V , we write
XA for {Xi | i ∈ A} and ΩA =

∏
i∈A Ωi. Let the joint probability of XV

denote

pV (xV ) = Pr(XV = xV ),

for every xV ∈ ΩV =
∏

i∈V Ωi and let θV = {pV (xV ) | xV ∈ ΩV }. The
marginal probability of XA for A ⊂ V can be written as

pA(xA) = Pr(XA = xA) =
∑

xV \A

pV (xV ),

for every xA ∈ ΩA =
∏

i∈A Ωi and θA = {pA(xA) | xA ∈ ΩA}. The symbol
“\” denotes the operator of a difference set. The conditional probability of
XA given XB = xB is defined as

pA|B(xA|xB) = Pr(XA = xA | XB = xB) = pA∪B(xA∪B)/pB(xB),

providing A∪B ⊂ V and A∩B = ∅ where ∅ denotes the empty set, and also
θA|B = {pA|B(xA|xB) | xA ∈ ΩA, xB ∈ ΩB}.

In this paper, we assume that the graph of XV has the global independence
that, for a triplet (A, B, C) of mutually disjoint subsets of V and V = A∪B∪
C, each vertex of A is separated from each vertex of B given the subset C.
Then, under the global independence structure, XA is independent of XB

given XC . Thus we have

pV (xV ) = pC(xC)pA|C(xA|xC)pB|C(xB |xC),

so that {θC , θA|C , θB|C} are mutually independent. Suppose that observed
data can be classified into three groups such that one is complete data and
the others are incomplete data with XB and XA missing. The observed data
patterns are indicated by T = {t0, t1, t2} = {V, A ∪ C, B ∪ C}. In addition,
we assume missingness at random in the sense of Rubin [7]. Each of observed
data is denoted by n0 = {nt0(xt0) | xt0 ∈ Ωt0}, n1 = {nt1(xt1) | xt1 ∈ Ωt1}
and n2 = {nt2(xt2 ) | xt2 ∈ Ωt2}. The sizes of the incomplete data n1 and n2

are considerably larger than the size of the complete data n0. Assuming that
observed data n = (n0, n1, n2) have a multinomial distribution with θV , the
likelihood L(n|θV ) is given by

L(n|θV ) = f(n0|θt0)f(n1|θt1)f(n2|θt2)

∝
∏

0≤i≤2

⎧⎨
⎩

∏
xti

∈Ωti

pti(xti)
nti

(xti
)

⎫⎬
⎭ . (1)
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For the multinomial model, we assume that the prior distribution of θV is
a Dirichlet distribution which has the density function

π(θV |αV ) ∝
∏

xV ∈ΩV

pV (xV )αV (xV )−1, (2)

where αV = {αV (xV ) | xV ∈ ΩV } is a hyper-parameter. Then, accord-
ing to the mutually independence relationships among {θC , θA|C , θB|C}, it is
possible to factorize π(θV |αV ) into

π(θV |αV ) = π(θC |αC)π(θA|C |αAC)π(θB|C |αBC), (3)

where αC = {αC(xC) | xC ∈ ΩC}, αAC = {αAC(xA∪C) | xA∪C ∈ ΩA∪C} and
αBC = {αBC(xB∪C) | xB∪C ∈ ΩB∪C}. The Dirichlet prior distribution (3)
describes conditional independence of prior distributions and is called hyper
Dirichlet prior distribution by Dawid and Lauritzen [3].

From the equations (1) and (2), we can obtain the mixture posterior
distribution with the density

π(θV | n)
∝ L(n|θV ) × π(θV | αV )

∝
∑

Ω(n1)

(
nt1(xt1 )
{ñt1(xV )}

) ∑
Ω(n2)

(
nt2(xt2)
{ñt2(xV )}

) ∏
xV ∈ΩV

pV (xV )α̃V (xV )−1,

(4)

where, for i = 1, 2,

∑
Ω(ni)

(
nti(xti)

{ñti(xV )}
)

=
∏

xti
∈Ωti

∑
Ω(nti

(xti
))

(
nti(xti)

{ñti(xV )}
)

and
∑

Ω(nti
(xti

)) denotes the sum over all possible ñti(xV ) for all xV ∈ ΩV

under the conditions ñti(xV ) ≥ 0 and
∑

xV \ti
ñti(xV ) = nti(xti), and

α̃V (xV ) = αV (xV ) + nt0(xV ) + ñt1(xV ) + ñt2(xV ).

Because of combinational explosion, the posterior density (4) has a very com-
plicated function. Therefore, it is extremely difficult to calculate exactly
π(θV |n) and these computation may take a long time when the observed
data are moderately large.

Instead of performing the infeasible Bayesian computation, we use the
DA algorithm which imputes incomplete data and finds π(θV |n) using the
Monte Carlo method.
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3 DA algorithm to graphical models

The DA algorithm is a type of Markov chain Monte Carlo. In the case
that the incomplete-data posterior density is complicated as the posterior
distribution (4) and the complete-data posterior is relative easy to handle
and draw from, the DA algorithm is very suitable. Each iteration of the DA
algorithm consists of an Imputation-step and a Posterior-step.

For this case, the exact posterior distribution π(θC |n) can be obtained
without any iterations, since the complete marginal data for XC are calcu-
lated from n. Then the DA algorithm for the graphical model is given by the
following iterative scheme:

Initialization: Set an initial distribution π(0)(θV |n) = π(θV |αV ).

Imputation-step: Repeat the following steps for l = 1, . . . , L to obtain the
augmented data ñ = (n0, ñ1, ñ2), where

ñ1 = {ñt1(xV ) | xV ∈ ΩV ,
∑

xB∈ΩB

ñt1(xV ) = nt1(xt1 ), ñt1(xV ) ≥ 0},

ñ2 = {ñt2(xV ) | xV ∈ ΩV ,
∑

xA∈ΩA

ñt2(xV ) = nt2(xt2 ), ñt2(xV ) ≥ 0}.

1. Generate θ∗V from the current approximation π(t−1)(θV |n).
2. Generate ñ1(l) and ñ2(l) from the predictive multinomial distribu-

tions f(ñ1|θ∗B|t1 , n
1) and f(ñ2|θ∗A|t2 , n

2), where

θ∗B|t1 = {p∗B|t1(xB |xt1) | xB ∈ ΩB, xt1 ∈ Ωt1},
θ∗A|t2 = {p∗A|t2(xA|xt2) | xA ∈ ΩA, xt2 ∈ Ωt2}.

Posterior-step: Update π(t)(θV |n) given {ñ(l) | 1 ≤ l ≤ L} using the Monte
Carlo method:

π(t)(θV |n) =
1
L

L∑
l=1

π(θC |n)π(θA|C |ñ(l))π(θB|C |ñ(l)).

Then

π(θA|C |ñ(l)) ∝
∏

xC∈ΩC

∏
xA∈ΩA

pA|C(xA|xC)α̃
(l)
AC(xA∪C)−1,

π(θB|C |ñ(l)) ∝
∏

xC∈ΩC

∏
xB∈ΩB

pB|C(xB |xC)α̃
(l)
BC(xB∪C)−1,

where

α̃
(l)
AC(xA∪C) = αAC(xA∪C) + nt0(xA∪C) + nt1(xt1) +

∑
xB∈ΩB

ñ
(l)
t2 (xV ),

α̃
(l)
BC(xB∪C) = αBC(xB∪C) + nt0(xB∪C) + nt2(xt2) +

∑
xA∈ΩA

ñ
(l)
t1 (xV ).
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Until the approximations π(t)(θA|C |n) and π(t)(θB|C |n) converge to stationary
distributions, the Imputation- and Posterior-steps are alternated repeatedly.
Achieving convergence of the DA algorithm, the true posterior distribution
π(θV |n) can be found.

In the practical implementation of the DA algorithm, the selection of the
number of imputation (L) is perhaps more crucial. When the proportion of
missing data in incomplete data is high and the size of the incomplete data is
large, L must be considerably large. However, it is difficult to determine L on
theoretical bases. In order to assess the convergence, diagnostic techniques
are applied to output from the DA iteration. Cowles and Carlin [2] provide
the comparative reviews of many convergence diagnostic techniques.

4 Application of LC-DA algorithm

In this section, we present the LC-DA algorithm. The important property of
the LC-DA algorithm is that the DA algorithm is applied to each of factorized
posterior distributions according to a graph structure and each posterior
distribution is computed independently. Then it is possible to reduce the
computational efforts from the viewpoint of computational complexity.

We denote the marginal data for XA∪C and XB∪C as nAC = (n0
AC , n1, n2

C)
and nBC = (n0

BC , n1
C , n2), where

n0
AC = {nt0(xA∪C) | xA∪C ∈ ΩA∪C}, n0

BC ={nt0(xB∪C) | xB∪C ∈ ΩB∪C},
n1

C = {nt1(xC) | xC ∈ ΩC}, n2
C = {nt2(xC) | xC ∈ ΩC}.

With local computation to find π(θV |n), we can obtain the following the-
orem.

Theorem 4.1. Suppose that C separates A and B in V . If C ⊆ t for all
t ∈ T , then the calculation of the posterior distributions of θA|C and θB|C
can be done independently.

Theorem 1 guarantees that the DA algorithm can execute separately to
obtain the posterior distributions of θA|C and θB|C given nAC and nBC . The
condition of C ⊆ t for all t ∈ T is called “lossless decomposition” by Geng
and Li [5]. Then the LC-DA algorithm realizes the computation according
to the following iterative scheme:

The DA iteration of π(θA|C |nAC)

Initialization: Set an initial distribution π(0)(θA|C |nAC) = π(θA|C |αAC).

Imputation-step: Repeat the following steps for l = 1, . . . , L to impute ñ2
C ,

where

ñ2
C = {ñt2(xA∪C) | xA∪C ∈ ΩA∪C ,

∑
xA

ñt2(xA∪C) = nt2(xC),

ñt2(xA∪C) ≥ 0}.
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1. Generate θ∗A|C from the current approximation π(t−1)(θA|C |nAC).

2. Generate the imputed data ñ
2(l)
C from the predictive multinomial

distribution f(ñ2
C |θ∗A|C , n2

C).

Posterior-step: Update π(t−1)(θA|C |nAC) by the Monte Carlo method:

π(t)(θA|C |nAC) =
1
L

L∑
l=1

π(θA|C | α̃
(l)
AC),

where

α̃
(l)
AC(xA∪C) = αAC(xA∪C) + nt0(xA∪C) + nt1(xA∪C) + ñ

(l)
t2 (xA∪C).

The DA iteration of π(θB|C |nBC)
The DA algorithm to obtain π(θB|C |nBC) are similar to the DA iteration
of π(θA|C |nAC): The Imputation-step generates {ñ1(l)

C | 1 ≤ l ≤ L},
where ñ1

C = {ñt1(xB∪C) | xB∪C ∈ ΩB∪C ,
∑

xB
ñt1(xB∪C) =

nt1(xC), ñt1(xB∪C) ≥ 0}.The Posterior-step finds π(t)(θB|C |nBC) using
n0

BC , n2 and {ñ1(l)
C | 1 ≤ l ≤ L}.

When each of the approximations π(t)(θA|C |nAC) and π(t)(θB|C |nBC) con-
verges to a stationary distribution, the true posterior distribution π(θV |n)
can be calculated.

5 Computational efficiency of LC-DA algorithm

We now evaluate the computational efficiency of the LC-DA algorithm from
the viewpoint of computational complexity. Here we introduce two quantities:

• ||ΩV || = the number of all possible values in ΩV

• ||ΩA|| = the number of all possible values in ΩA where A ⊂ V

As for the space complexity, the amount of the storage space required
by the DA algorithm is ||ΩV ||. Alternatively, in the LC-DA algorithm, it
can not exceed max(||ΩA∪C ||, ||ΩB∪C ||). Next consider the time complexity
under the worst-case assumption. The time complexity of the DA algorithm
can be expressed by O(||ΩV ||). The implementation of the LC-DA algorithm
can be done in O(max(||ΩA∪C ||, ||ΩB∪C ||)).

The LC-DA algorithm is more efficient than the DA algorithm from both
aspects of the space and time complexities and then can reduce the compu-
tational efforts.

Finally, we briefly describe the convergence speed of the LC-DA algo-
rithm. The LC-DA algorithm is regarded as the collapsed Gibbs sampler
of Liu [6]. Then, according to Liu’s [6] result, the convergence speed of the
LC-DA algorithm is faster than the speed of the DA algorithm. We shall
investigate its convergence speed in detail.
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Appendix

Proof of Theorem 1
Since C ⊆ t for all t ∈ T , we have t ∩ C = C and∏
xt∈Ωt

pt(xt)nt(xt)

=

{ ∏
xC∈ΩC

pC(xC)nt(xt)

}

×
⎧⎨
⎩

∏
xt∩(A∪C)∈Ωt∩(A∪C)

∑
Ω(nt(xt∩(A∪C)))

(
nt(xt∩(A∪C))
{ñt(xA∪C)}

)

∏
xC∈ΩC

∏
xA∈ΩA

pA|C(xA|xC)ñt(xA∪C)

}

×
⎧⎨
⎩

∏
xt∩(B∪C)∈Ωt∩(B∪C)

∑
Ω(nt(xt∩(B∪C)))

(
nt(xt∩(B∪C))
{ñt(xB∪C)}

)

∏
xC∈ΩC

∏
xB∈ΩB

pB|C(xB|xC)ñt(xB∪C)

}

=

{ ∏
xC∈ΩC

pC(xC)nt(xt)

}

×
⎧⎨
⎩

∑
Ωt∩(A∪C)(nt)

(
nt(xt∩(A∪C))
{ñt(xA∪C)}

) ∏
xC∈ΩC

∏
xA∈ΩA

pA|C(xA|xC)ñt(xA∪C)

⎫⎬
⎭

×
⎧⎨
⎩

∑
Ωt∩(B∪C)(nt)

(
nt(xt∩(B∪C))
{ñt(xB∪C)}

) ∏
xC∈ΩC

∏
xB∈ΩB

pB|C(xB |xC)ñt(xB∪C)

⎫⎬
⎭ .

Then for any s ⊂ V , t ∩ s = s, it holds nt(xs) = ñt(xs) and∑
Ωt∩s(nt)

(
nt(xt∩s)
{ñt(xs)}

)
= 1.

Therefore it is possible to factorize the likelihood (1) as follows:

L(θV |n) = L(θC |nC)L(θA|C |nAC)L(θB|C |nBC). (5)

From the prior distribution (3) and the likelihood (5), we can obtain the
posterior distribution

π(θV |n) ∝ {L(θC |nC)π(θC |αC)} × {
L(θA|C |nAC)π(θA|C |αAC)

}
×{

L(θB|C |nBC)π(θB|C |αBC)
}

= π(θC |nC)π(θA|C |nAC)π(θB|C |nBC).



1392 Masahiro Kuroda

Since it also holds the mutual independence among the posterior distribu-
tions, we can compute each posterior distribution independently.
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