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Abstract

In epidemiological studies, observed data are often collected subject to misclassification
errors. In this paper, we discuss the Bayesian estimation for contingency table with misclas-
sification errors. Employing the exact Bayesian computations to obtain posterior means as
estimates, we are faced with computational difficulties. In order to find the posterior distri-
bution, we apply the data augmentation(DA) algorithm to misclassified categorical data.

Keywords: Misclassification, Bayesian estimation, data augmentation algorithm, contingency

table, posterior means.

1 Introduction

In epidemiological studies, observed data are often collected subject to misclassification errors.

Such misclassification errors cause bias of estimation and reduce efficiency in the analysis of

contingency tables. Many investigators have discussed how to adjust for the effects of misclassi-

fication, see the review papers, Chen (1989) and Walter and Irwig (1987). Espeland and Odoroff

(1985) discussed the maximum likelihood estimation for a recursive system of log-linear models

based on double sampling schemes by the EM algorithm. Espeland and Hui (1987) applied

the Fisher scoring algorithm to evaluating variances and covariances of estimates. From the

Bayesian viewpoint, Geng and Asano (1989) considered estimation methods for misclassified

categorical data making use of prior information and double sampling schemes, and obtained
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posterior means as estimates. Viana (1994) applied Bayesian computations based on the matrix

of misclassification probabilities to small-sample multinomial data. Evans, Guttman, Hatiovsky

and Swartz (1996) discussed the implementation of the Gauss-Jacobi quadrature and the Gibbs

sampling algorithm for the posterior analysis of binary response data with misclassification.

In this paper, we present a Bayesian approach that utilizes prior knowledge about misclas-

sification and incorporates this prior knowledge with observations subject to misclassification.

Although the EM algorithm or the Fisher scoring algorithm are often applied to estimating

model parameters, these algorithms can not evaluate posterior distributions on the model pa-

rameters. Furthermore, these algorithms do not apply to our estimation problem because of

the unidentifiability of the model parameters. However, our Bayesian approach, assuming a

prior distribution on the model parameters, can overcome these problems. In order to find the

posterior distribution of model parameters and calculate posterior means as estimates of them,

we use the data augmentation(DA) algorithm by Tanner and Wong (1987).

In Section 2, we show the Bayesian computation to find a posterior distribution given mis-

classified observed data. In Section 3, we give the DA algorithm to approximate the posterior

distribution, because of difficulties with the calculation of the posterior distribution. Section 4

presents two numerical experiments to examine the performance of the DA algorithm.

2 Misclassified observed data and Bayesian computation

Let X and Y be categorical variables having I and J categories, respectively, and let Y ′ be a

misclassified variable of Y having K categories. We assume that two types of misclassified data

are observed: (i) data for X and Y ′, denoted as n = {ni+k | i ∈ {1, . . . , I}, k ∈ {1, . . . ,K}},
and (ii) data for Y and Y ′, denoted as m = {m+jk | j ∈ {1, . . . , J}, k ∈ {1, . . . ,K}}, where

the symbol “+” means the sum over corresponding variables, for example, ni+k =
∑

j nijk.

Let pijk denote a probability for (X,Y, Y ′) = (i, j, k) and θXY Y ′ = {pijk | i ∈ {1, . . . , I}, j ∈
{1, . . . , J}, k ∈ {1, . . . ,K}} denote a set of probabilities.

In this paper, the goal is to find the posterior distribution of model parameters θXY = {pij+ |
i ∈ {1, . . . , I}, j ∈ {1, . . . , J}} which are the marginal probabilities of X and Y , and obtain the

posterior means of θXY as estimates.

Assume that n and m have independently multinomial distributions with parameters θXY ′ =

{pi+k | i ∈ {1, . . . , I}, k ∈ {1, . . . ,K}} and θY Y ′ = {p+jk | j ∈ {1, . . . , J}, k ∈ {1, . . . ,K}},
respectively, that is,

f(n | θXY ′) =
n+++!∏
i,k ni+k!

∏
i,k

p
ni+k

i+k , f(m | θY Y ′) =
m+++!∏
j,k m+jk!

∏
i,k

p
m+jk

+jk , (1)
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and that the prior distribution of θXY Y ′ is a Dirichlet distribution which has the density function

π(θXY Y ′ | αXY Y ′) =
Γ[α+++]∏
i,j,k Γ[αijk]

∏
i,j,k

p
αijk−1
ijk , (2)

where αXY Y ′ = {αijk | i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, k ∈ {1, . . . ,K}} is a set of hyper-

parameters of the prior distribution of θXY Y ′ . From the equations (1) and (2), we obtain

the mixture posterior distribution given n and m. The posterior density is given by

π(θXY Y ′ | n,m)

∝ f(n | θXY ′) f(m | θY Y ′)π(θXY Y ′ | αXY Y ′) =
∏
i,k

p
ni+k

i+k

∏
j,k

p
m+jk

+jk

∏
i,j,k

p
αijk−1
ijk

=
∏
k

⎧⎨
⎩

∏
i

∑
Ω(n)

ni+k!∏
j ñijk!

∏
j

∑
Ω(m)

m+jk!∏
i m̃ijk!

p
αijk+ñijk+m̃ijk−1
ijk

⎫⎬
⎭ , (3)

where
∑

Ω(n) denotes the sum over all possible {ñijk} under the conditions ñijk ≥ 0 for all i,

j and k, and
∑

j ñijk = ni+k, and
∑

Ω(m) denotes the sum over all possible {m̃ijk} under the

conditions m̃ijk ≥ 0 for all i, j and k, and
∑

i m̃ijk = m+jk. However, the posterior density (3)

has a very complicated function, because of combinational explosion. It is extremely difficult

to calculate exactly the posterior distribution and these calculation may take a long time when

observed data are moderately large.

For the case that the incomplete-data posterior density is complicated as the equation (3) and

the complete-data posterior density is relative easy to handle and draw from, the DA algorithm

is very suitable.

In next section, we present the DA algorithm to approximate the posterior distribution to

find the posterior distribution and estimate posterior means of model parameters θXY ,

3 DA algorithm for misclassified data

The DA algorithm consists of iterating between the imputation-step and the posterior-step.

For this misclassified multinomial model, the DA algorithm is given by the following iterative

scheme:

Imputation-step: Repeat the following two steps for l = 1, . . . , L to obtain the imputed data of

n and m such as ñ = {ñijk | i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, k ∈ {1, . . . ,K}, ∑j ñijk = ni+k}
and m̃ = {m̃ijk | i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, k ∈ {1, . . . ,K}, ∑i m̃ijk = m+jk}.

1. Generate cell probabilities {p∗ijk} from the current estimate of the posterior distribu-

tion,
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2. Generate the imputed data ñ(l) and m̃(l) from the predictive distributions which have

the conditional multinomial distributions, given n and m, with densities

f(ñ | {p∗j|i,k}, n) =
∏
i,k

ni+k!∏
j ñijk!

∏
i,j,k

p
∗ ñijk

j|i,k ,

f(m̃ | {p∗i|j,k},m) =
∏
j,k

mi+k!∏
i m̃ijk!

∏
i,j,k

p
∗ m̃ijk

i|j,k ,

where p∗j|i,k = p∗ijk/p
∗
i+k and p∗i|j,k = p∗ijk/p

∗
+jk.

Posterior-step: Update the current approximation of the posterior distribution of θXY Y ′ , given

these imputed data ñ(l) and m̃(l), for l = 1, . . . , L, by the Monte Carlo method,

π(θXY Y ′ | n,m) =
1
L

L∑
l=1

π(θXY Y ′ | ñ(l), m̃(l)).

Until the approximated distribution converges to a stationary distribution, the imputation-step

and the posterior-step are iterated. Getting a stationary distribution, the values of L may be

increased to improve the accuracy with respect to the Monte Carlo method.

Then we can find the posterior distribution of θXY and can obtain easily the posterior

means and variances of them. Furthermore, it is possible to calculate the highest posterior

density(HPD) region that is the Bayesian analog of the confidence intervals.

4 Numerical experiments

We provide two numerical experiments to examine the performance of the DA algorithm de-

scribed the previous section.

4.1 Comparison of estimates and exact values

In the following numerical experiment, we compare the estimates obtained by the DA algo-

rithm with the posterior means using the exact Bayesian calculation given by Geng and Asano

(1987) regarding the data from Diamond and Lilienfeld (1962) that reported a case-control s-

tudy concerning the circumcision status of male partners of woman with and without cervical

cancer. The study sample was categorized by cervical cancer status, X (Case and Control),

and self-reported circumcision status, Y ′ (Yes or No), in the left side of Table 1. In order to

gain the information on the degree of misclassification of circumcision status, the supplemen-

tal sample concerning the relationship between actual circumcision status, Y (Yes or No), and

Y ′ was gathered from the separate population shown by in the center of Table 1. Espeland

and Hui (1987) described that, for the misclassified multinomial model, the conditional inde-

pendence model between X and Y given Y ′ from the class of hierarchical log-linear models
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was appropriate, since no observed data for X, Y and Y ′ were obtained. Furthermore, for the

conditional independence model, Geng and Asano (1989) gave the hypothetical prior informa-

tion shown in the right side of Table 1. We use their prior information as hyper-parameters

αXY Y ′ = {αijk | i ∈ {Case, Control}, j ∈ {Yes, No}, k ∈ {Yes, No}} and then obtain a posterior

distribution and estimates of θXY = {pij+ | i ∈ {Case, Control}, j ∈ {Yes, No}} for X and Y

by posterior means.

In this numerical experiment, we evaluate the accuracy of the estimates using the DA algo-

rithm in comparison with the exact posterior means given by Geng and Asano (1989). Table 2

shows the exact values, and the posterior means, the standard deviations(SDs) and the posterior

95 % credible intervals(CIs) of θXY obtained from simulated 10,000 samples after a burn-in of

1,000 samples. It can be seen that the estimates have approximately three-digit accuracy for

the exact values. From the numerical results, we can see that the DA algorithm works quite

well to estimate posterior means.

4.2 Performance of the DA algorithm

In the next numerical experiment, we examine the performance of the DA algorithm in compari-

son with the EM algorithm and the Fisher scoring algorithm. We apply the DA algorithm to the

double sampling data from Hochberg (1977). The data were the highway safety research data

relating the seat-belt usages to driver injuries. The main sample was of 80,084 accidents that

were recorded by police subject to misclassification errors. The subsample was of 1,796 accidents

that were recorded by both imprecise police reports and precise hospital interviews. Then, by

the double sampling design, the subsample was randomly selected from the main sample. Thus,

the subsample and the main sample have independent and identical distributions.

The main sample and the subsample in Table 3 were categorized by four variables X, X ′, Y

and Y ′, where X and Y denote precise personal survey for seat-belt usages and driver injuries,

and X ′ and Y ′ denote imprecise police reports for them.

In this experiment, we estimate model parameters under the saturated multinomial model,

because our purpose is to investigate whether the DA algorithm is applicable to estimate model

parameters, but not to analyze the misclassified observed data.

For these data, we assume that the main sample data and the subsample data have inde-

pendent and identical multinomial distributions with

θXX′Y Y ′ = {pijkl | i ∈ {Yes, No}, j ∈ {Yes, No}, k ∈ {Yes, No}, l ∈ {Yes, No}},

where pijkl = Pr(X = i,X ′ = j, Y = k, Y ′ = l) and the prior distribution for θXX′Y Y ′

has the Dirichlet distribution with hyper-parameters αXX′Y Y ′ = {αijkl | i ∈ {Yes, No}, j ∈
{Yes, No}, k ∈ {Yes, No}, l ∈ {Yes, No}}. Then the model parameters are marginal probabili-
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ties of X and Y ,

θXY = {pi+k+ | i ∈ {Yes, No}, k ∈ {Yes, No}},

where pi+k+ =
∑

j,l pijk. We utilize the subsample in Table 3 as hyper-parameters αXX′Y Y ′ and

obtain estimates of θXY by the DA algorithm. Table 4 shows the estimates and the SDs of θXY

obtained by the DA algorithm, the exact Bayesian calculation, the Fisher scoring algorithm and

the EM algorithm. The estimates using the DA algorithm can be found from simulated samples

100,000 after a burn-in samples 10,000 in two chains. The exact values of estimates of θXY

using the Bayesian calculation are given by Geng and Asano (1989) who assumed the Jeffreys

noninformative prior. The estimation using the Fisher scoring algorithm were carried out with

�EM developed by Vermunt (1997).

From these numerical results, it can be seen that the DA algorithm has the equivalent perfor-

mance of the EM and the Fisher scoring algorithm in comparison with these estimates and SDs.

Applying the EM and the Fisher scoring algorithm, their algorithms have such disadvantages

as it is impossible to find the posterior distribution of model parameters, may not be applied

them to estimation of parameters owing to unidentifiability of the model and may be difficult

to calculate the Fisher information matrix needed in the Fisher scoring algorithm.

5 Concluding remarks

In this paper, we discussed the DA algorithm to estimate model parameters for misclassified

categorical data. We gave the posterior distribution by exact Bayesian computation. To avoid

complicated calculation, we used the DA algorithm and find the posterior distribution. It is

easily seen that the DA algorithm is the iterative simulation version of the EM algorithm that

the imputation-step corresponds to the E-step and the posterior-step corresponds to the M-step.

In order to explore the possibility of parameter estimation by the DA algorithm, we provided

two numerical experiments. In the first experiment, we evaluated accuracy of estimates in

comparison with exact values. In the second experiment, we examined the performance of

the DA algorithm. The results of both the two numerical experiments showed the advantage of

applying the DA algorithm in terms of accuracy of estimates and in terms of algorithm simplicity

to find the posterior distribution.

For the inference of multidimensional contingency tables, the Bayesian inference by the DA

algorithm can be easily extended and also widely utilized. Then we may need to take account for

conditional independence between variables in models. For parameters assuming the conditional

independence model, A prior Dirichlet distribution that has hyper Markov laws by Dawid and

Lauritzen (1993) is very suitable. Our future problem is how to incorporate prior information

with the hyper-parameters of a hyper Dirichlet prior distribution without consistency.
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Table 1: Data from Diamond and Lilienfeld (1962) and hypothetical prior information αXY Y ′

Study Sample Supple. Sample Hypothetical prior
Y ′ Y X X X

Case Control Unknown Case Control
Yes 37 80 10

Yes 5 14
No 19 20 40
Yes 47 40 20

No 95 86
No 89 10 80

Table 2: Posterior means and SDs and 95% CIs using the DA algorithm and the exact posterior
means given by Geng and Asano(1989)

X Y Exact Bayes DA
Posterior means Posterior means CI

± SD (lower-upper)
Case Yes 0.3794 0.3786 ± 0.0127 0.3512 - 0.4017

No 0.1116 0.1134 ± 0.0159 0.0838 - 0.1460
Control Yes 0.0921 0.0927 ± 0.0107 0.0737 - 0.1142

No 0.4169 0.4152 ± 0.0113 0.3916 - 0.4364

Table 3: Data of highway safety research(Hochberg, 1977)

Main Sample Subsample
X ′ = Yes X ′ = No X ′ = Yes X ′ = No

Y ′ Y X = Yes X = No X = Yes X = No
Yes 17 3 10 258

Yes 1196 13562
No 3 4 4 25
Yes 16 3 25 194

No 7151 58175
No 100 13 107 1014

Table 4: Estimates and their SDs of θXY

X Y Exact Bayes DA Fisher scoring EM
Posterior means Posterior means Estimates

± SD ± SD ± SD
Yes Yes 0.0397 ± 0.0043 0.0389 ± 0.0041 0.0394 ± 0.0045 0.0394

No 0.1293 ± 0.0065 0.1311 ± 0.0073 0.1190 ± 0.0076 0.1294
No Yes 0.2558 ± 0.0079 0.2577 ± 0.0078 0.2563 ± 0.0103 0.2559

No 0.5752 ± 0.0093 0.5722 ± 0.0092 0.5870 ± 0.0116 0.5752
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