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Abstract

Principal components analysis (PCA) is a popular dimension-reducing tool that replaces the

variables in a data set by a smaller number of derived variables. In the context of PCA, we

sometimes meet variable selection problems. For example, in order to give a simple interpretation

of principal components, we select a subset of variables that best approximates all the variables.

Modified PCA (M.PCA) proposed by Tanaka and Mori (1997) derives principal components which

are computed as a linear combination of a subset of variables but can reproduce all the variables

very well. When applying M.PCA to qualitative data, the alternating least squares (ALS) algorithm

can be used as a quantification method. In this situation, the computation time has been a big

issue so far, because the total number of iterations of the algorithm is much larger and it takes a

long computational time until its convergence even though a cost-saving selection procedure such as

Backward elimination or Forward selection is employed. In order to accelerate the convergence of the

ALS algorithm in PCA of qualitative data, Kuroda et al. (2011) derived a new iterative algorithm

using using the vector ε (vε) algorithm by Wynn (1962). In this paper, we investigate how much

the proposed vε acceleration algorithm improves the computational efficiency when applying the

vε accelerated ALS algorithm to the variable selection problem in M.PCA of qualitative data.

1 Introduction

In the analysis of data with large numbers of variables, a common objective is to reduce the dimension-

ality of the data set. Principal components analysis (PCA) is a popular dimension-reducing tool that

replaces the variables in the data set by a smaller number of derived variables. However, for example,

in PCA of a data set with a large number of variables, the result may not be easy to interpret. One



way to give a simple interpretation of principal components is to select a subset of variables that best

approximates all the variables. For other several situations, we meet variable selection problems in the

context of PCA. Various variable selection criteria in PCA has been proposed by Jolliffe (1972, 1973),

McCabe (1984), Robert and Escoufier (1976) and Krzanowski (1987). Al-Kandari et al. (2001, 2005)

gave guidelines as to the types of data for which each variable selection criteria is useful. Cadima

et al. (2004) reported computational experiments carried out with several heuristic algorithms for

the optimization problems resulting from the variable selection criteria in PCA found in the above

literature.

Tanaka and Mori (1997) proposed modified PCA (M.PCA) for deriving principal components

which are computed by using only a selected subset of variables but which represent all the variables

including those not selected. Since M.PCA includes variable selection procedures in the analysis, its

criteria can be used directly to find a reasonable subset of variables. Mori et al. (1997) extended

M.PCA to qualitative data and provided variable selection procedures, in which the alternating least

squares (ASL) algorithm of Young et al. (1978) is utilized. Then the ALS algorithm iterates between

optimal scaling for quantifying qualitative data and estimating parameters in M.PCA. In this situation,

the computation time of the ALS algorithm has been a big issue so far, because the total number of

iterations of the algorithm is much larger for quantification using the ALS algorithm, and it takes a

long computational time until its convergence for searching a reasonable subset even though a cost-

saving selection procedure such as Backward elimination or Forward selection is employed. For such

situations, to accelerate the convergence of the ALS algorithm in PCA of qualitative data, Kuroda et

al. (2011) derived a new iterative algorithm using the vector ε (vε) algorithm by Wynn (1962).

In this paper, we investigate how much the proposed vε acceleration algorithm improves the

computational efficiency for the variable selection problem in M.PCA of qualitative data. Section 2

introduces the formulation of M.PCA, and Backward elimination and Forward selection procedures

used in variable selection. In Section 3, we describe the ALS algorithm for quantifying qualitative data

in PCA and, in Section 4, present the vε accelerated ALS algorithm for speeding up the convergence.

Numerical experiments in Section 5 illustrate the performance of the vε accelerated ALS algorithm.

In Section 6, we present our concluding remarks.

2 Modified PCA for variable selection

2.1 Formulation of modified PCA

Let X = (X1 X2 · · · Xp) be an n × p matrix of n observations on p variables and be columnwise

standardized. In PCA, we postulate that X is approximated by the following bilinear form:

Z = X̂A,(1)

where Z = (Z1 Z2 · · · Zr) is an n × r matrix of n component scores on r (1 ≤ r ≤ p) components,

and A = (A1 A2 · · · Ar) is a p× r matrix consisting of the eigenvectors of X�X/n and A�A = Ir.

M.PCA derives principal components which are computed as linear combinations of a subset of

variables but which can reproduce all the variables very well. Let X be decomposed into an n × q

submatrix XV1 and an n× (p−q) remaining submatrix XV2 . Then M.PCA finds r linear combinations

Z = XV1A. The matrix A consists of the eigenvectors associated with the largest r eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λr and is obtained by solving the eigenvalue problem:

[(S2
11 + S12S21)−DS11]A = 0,(2)

where S =

(
S11 S12

S21 S22

)
is the covariance matrix of X = (XV1 ,XV2) and D is a q×q diagonal matrix



of eigenvalues. A best subset of q variables has the largest value of the proportion P =
∑r

j=1 λj/tr(S)

or the RV -coefficient RV =
{∑r

j=1 λ
2
j/tr(S

2)
}1/2

. Here we use P as variable selection criteria.

2.2 Variable selection procedures

In order to find a subset of q variables, we employ Backward elimination and Forward selection of Mori

et al. (1998, 2006) as cost-saving stepwise selection procedures in which only one variable is removed

or added sequentially.

[Backward elimination]

Stage A: Initial fixed-variables stage

A-1 Assign q variables to subset XV1 , usually q := p.

A-2 Solve the eigenvalue problem (2).

A-3 Look carefully at the eigenvalues, determine the number r of principal components to be

used.

A-4 Specify kernel variables which should be involved in XV1 , if necessary. The number of

kernel variables is less than q.

Stage B: Variable selection stage (Backward)

B-1 Remove one variable from among q variables in XV1 , make a temporary subset of size q−1,

and compute P based on the subset. Repeat this for each variable in XV1 , then obtain q

values on P . Find the best subset of size q − 1 which provides the largest P among these

q values and remove the corresponding variable from the present XV1 . Put q := q − 1.

B-2 If P or q is larger than preassigned values, go to B-1. Otherwise stop.

[Forward selection]

Stage A: Initial fixed-variables stage

A-1 ∼ A-3 Same as A-1 to A-3 in Backward elimination.

A-4 Redefine q as the number of kernel variables (here, q ≥ r). If you have kernel variables,

assign them to XV1 . If not, put q := r, find the best subset of q variables which provides

the largest P among all possible subsets of size q and assign it to XV1 .

Stage B: Variable selection stage (Forward)

Basically the opposites of Stage B in Backward elimination.

In Backward elimination, to find the best subset of q − 1 variables, we perform M.PCA for

each of q possible subsets of the q − 1 variables among q variables selected in the previous selection

step. The total number of estimations for M.PCA from q = p − 1 to q = r is therefore large, i.e.,

p+(p− 1)+ · · ·+(r+1) = (p− r)(p+ r+1)/2. In Forward selection, the total number of estimations

for M.PCA from q = r to q = p−1 is pCr+(p−r)+(p−(r+1))+ · · ·+2 = pCr+(p−r−1)(p−r+2)/2.



3 Alternating least squares algorithm for M.PCA of qualitative data

When observed data are qualitative, ordinary PCA can not be directly applied to such data. In such

situations, optimal scaling is used to quantify the observed qualitative data and then ordinary PCA

can be applied.

To quantify Xj of qualitative variable j with Kj categories, the vector is coded by using an

n×Kj indicator matrix Gj with entries g(j)ik = 1 if object i belongs to category k, and g(j)ik′ = 0 if

object i belongs to some other category k′( �= k), i = 1, . . . , n and k = 1, . . . ,Kj . Then the optimally

scaled vector X∗j of Xj is given by X∗j = Gjαj , where αj is a Kj × 1 score vector for categories of Xj .

Let X∗ = (X∗1 X∗2 · · · X∗p) be an n× p matrix of optimally scaled observations to satisfy restrictions

X∗�1n = 0p and diag

[
X∗�X∗

n

]
= Ip,(3)

where 1n and 0p are vectors of ones and zeros of length n and p respectively.

To apply PCA to qualitative data, we determine the optimal scaling parameter X∗, in addition

to estimating Z and A. A possible computational algorithm for estimating simultaneously Z, A and

X∗ is the ALS algorithm. The existing ALS algorithms for PCA of qualitative data are PRINCIPALS

of Young et al. (1978) and PRINCALS of Giff (1989). Mori et al. (1996) used PRINCIPALS in

applying M.PCA to qualitative data. PRINCIPALS alternates between ordinary PCA and optimal

scaling, and minimizes

θ = tr(X∗ − ZA�)�(X∗ − ZA�)(4)

under the restriction (3). Then θ is to be determined by model parameters Z and A and optimal

scaling parameter X∗, by updating each of the parameters in turn, keeping the others fixed.

For the initialization of PRINCIPALS, we determine initial data X∗(0). The observed data X

may be used as X∗(0) after it is standardized to satisfy the restriction (3). For given initial data X∗(0)

with the restriction (3), PRINCIPALS iterates the following two steps:

• Model parameter estimation step: Obtain A(t) by solving

[
X∗(t)�X∗(t)

n

]
A = ADr,(5)

where A�A = Ir and Dr is an r × r diagonal matrix of eigenvalues, and the superscript (t)

indicates the t-th iteration. Compute Z(t) from Z(t) = X∗(t)A(t).

• Optimal scaling step: Calculate X̂(t+1) = Z(t)A(t)� from Equation (1). Find X∗(t+1) such that

X∗(t+1) = argmin
X∗ tr(X∗ − X̂(t+1))�(X∗ − X̂(t+1))

for fixed X̂(t+1) under measurement restrictions on each of the variables. Scale X∗(t+1) by

columnwise centering and normalizing.

4 The vector ε acceleration of the ALS algorithm

We briefly introduce the vε algorithm of Wynn (1962). The vε algorithm is utilized to speed up

the convergence of a slowly convergent vector sequence and is very effective for linearly converging

sequences. Kuroda et al. (2011) provided the vε accelerated ALS algorithm for PCA of mixed mea-

surement level data. The acceleration algorithm speeds up the convergence of the ALS sequence via



the vε algorithm and demonstrated that its speed of convergence is significantly faster than that of

the ALS algorithm.

Let {Y(t)}t≥0 = {Y(0),Y(1),Y(2), . . .} be a linear convergent sequence generated by an iterative

computational procedure and let {Ẏ(t)}t≥0 = {Ẏ(0), Ẏ(1), Ẏ(2), . . .} be the accelerated sequence of

{Y(t)}t≥0. Then the vε algorithm generates {Ẏ(t)}t≥0 by using

Ẏ(t−1) = Y(t) +

[[
(Y(t−1) −Y(t))

]−1
+
[
(Y(t+1) −Y(t))

]−1]−1
,(6)

where [Y]−1 = Y
/||Y||2 and ||Y|| is the Euclidean norm of Y. For the detailed derivation of

Equation (6), see Kuroda et al. (2011). When {Y(t)}t≥0 converges to a limit point Y(∞) of {Y(t)}t≥0,
it is known that, in most cases, {Ẏ(t)}t≥0 generated by the vε algorithm converges to Y(∞) faster

than {Y(t)}t≥0.
We assume that {X∗(t)}t≥0 generated by PRINCIPALS converges to a limit point X∗(∞). Then

the vε accelerated PRINCIPALS (vε-PRINCIPALS) produces a faster convergent sequence {Ẋ∗(t)}t≥0
of {X∗(t)}t≥0 and enables the acceleration of convergence of PRINCIPALS. The general procedure of

vε-PRINCIPALS iterates the following two steps:

• PRINCIPALS step: Compute model parameters A(t) and Z(t) and determine optimal scaling

parameter X∗(t+1).

• Acceleration step: Calculate Ẋ∗(t−1) using {X∗(t−1),X∗(t),X∗(t+1)} from the vε algorithm:

vecẊ∗(t−1) = vecX∗(t) +
[[
vec(X∗(t−1) −X∗(t))

]−1
+
[
vec(X∗(t+1) −X∗(t))

]−1]−1
,

where vecX∗ = (X∗�1 X∗�2 · · · X∗�p )�, and check the convergence by

∥∥∥vec(Ẋ∗(t−1) − Ẋ∗(t−2))
∥∥∥2 < δ,

where δ is a desired accuracy.

Before starting the iteration, we determine initial data X∗(0) satisfying the restriction (3) and execute

the PRINCIPALS step twice to generate {X∗(0),X∗(1),X∗(2)}.
vε-PRINCIPALS is designed to generate {Ẋ∗(t)}t≥0 converging to X∗(∞). Thus the estimate

of X∗ can be obtained from the final value of {Ẋ∗(t)}t≥0 when vε-PRINCIPALS terminates. The

estimates of Z and A can then be calculated immediately from the estimate of X∗ in the Model

parameter estimation step of PRINCIPALS.

Note that Ẋ∗(t−1) obtained at the t-th iteration of the Acceleration step is not used as the estimate

X∗(t+1) at the (t + 1)-th iteration of the PRINCIPALS step. Thus vε-PRINCIPALS speeds up the

convergence of {X∗(t)}t≥0 without affecting the convergence properties of ordinary PRINCIPALS.

5 Numerical experiments

In this section, we study how much faster vε-PRINCIPALS converges than ordinary PRINCIPALS

when applying to variable selection in M.PCA of qualitative data. Backward elimination and Forward

selection procedures are used in the problem. All computations are performed with the statistical

package R. CPU times taken are measured by the function proc.time1. For all experiments, δ for

convergence of vε-PRINCIPALS is set to 10−8 and PRINCIPALS terminates when |θ(t+1) − θ(t)| <
10−8, where θ(t) is the t-th update of θ calculated from Equation (4).

1Times are typically available to 10 msec.



5.1 Simulated data

We apply PRINCIPALS and vε-PRINCIPALS to variable selection in M.PCA of qualitative data using

simulated data that consist of 100 observations on 10 variables with 5 levels.

Table 1 shows the number of iterations and CPU time taken by two algorithms for finding a

subset of q variables based on 3 (= r) principal components. We compute the iteration and CPU time

speed-ups for comparing the speed of convergence of PRINCIPALS with that of vε-PRINCIPALS.

The iteration speed-up is defined as the number of iterations required for PRINCIPALS divided by

the number of iterations required for vε-PRINCIPALS. The CPU time speed-up is calculated similarly

to the iteration speed-up. The values of the second to fifth columns in the table indicate that the

number of iterations of PRINCIPALS is very large and a long time is taken for convergence, while

vε-PRINCIPALS converges considerably faster than PRINCIPALS. We can see from the sixth and

seventh columns in the table that vε-PRINCIPALS requires the number of iterations 3 to 5 times

smaller and CPU time 2 to 5 times shorter than vε-PRINCIPALS. In particular, vε-PRINCIPALS

speeds up well the convergence for the larger numbers of iterations.

The last row in the table shows the total number of iterations and total CPU time for selecting

8 subsets for q = 3, . . . , 10. When searching the best subset for each q, PRINCIPALS requires 64491

iterations in Backward elimination and 178249 iterations in Forward selection, while vε-PRINCIPALS

finds the subsets after 17530 and 32405 iterations, respectively. These values show that the compu-

tational times by vε-PRINCIPALS are reduced to only 28%(= 1/3.52) and 19% = (1/5.16) of those

of ordinary PRINCIPALS. The iteration and CPU time speed-ups given in the sixth and seventh

columns of the table demonstrate that the vε acceleration algorithm works well to accelerate the

convergence of {X∗(t)}t≥0 and consequently results in greatly reduced computation times in variable

selection problems.

5.2 Real data

We consider the variable selection problems in M.PCA of qualitative data to mild distribution of

consciousness (MDOC) data from Sano et al. (1977). The data consist of 87 individuals and 23

categorical variables with 4 levels. In the variable selection problem, we select a suitable subset based

on 2 (= r) principal components.

Table 2 summarizes the results of variable selection using Backward elimination and Forward

selection procedures for finding a subset of q variables. The proportion P in the eighth column of the

table indicates the variation explained by the first 2 principal components for the selected q variables.

Iizuka et al. (2003) selected the subset of 6 variables found by either procedures as a best subset,

since P slightly changes until q = 6 in Backward elimination and after q = 6 in Forward selection.

The values of the second to fifth columns in the table show that vε-PRINCIPALS finds a subset of

q variables by taking the smaller numbers of iterations and shorter CPU times than PRINCIPALS.

We see from the last row in the table that the computational time of vε-PRINCIPALS is less than

one-half of that of PRINCIPALS when finding 22 subsets using two selection procedures.

6 Concluding remarks

In this paper, we examine the performance of the vε accelerated ALS algorithm by applying to

variable selection problems in M.PCA of qualitative data. The vε algorithm in itself is a fairly simple

computational procedure and speeds up the convergence of the ALS algorithm without losing its stable

convergence property.

Numerical experiments employing simulated and real data demonstrated that the vε accelerated

ALS algorithm improves the speed of convergence of the ordinary ALS algorithm and enables greatly



the reduction of computation times in the variable selection problems for finding a suitable variable

set using Backward elimination and Forward selection. The results indicate that the vε acceleration

works effectively in saving the computational time in variable selection problems.

The computations of variable selection in M.PCA of qualitative data are partially performed by

the statistical package VASpca(VAriable Selection in principal component analysis) that was developed

by Mori, Iizuka, Tarumi and Tanaka in 1999 and can be obtained from Mori’s website in Appendix.

We will provide VASpca using vε-PRINCIPALS as the iterative algorithm for PCA and M.PCA of

qualitative data.
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Appendix

URL of VASpca

http://mo161.soci.ous.ac.jp/vaspca/indexE.html
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Table 1: The numbers of iterations and CPU times of PRINCIPALS and vε-PRINCIPALS and their

speed-ups in application to variable selection for finding a subset of q variables using simulated data.

(a) Backward elimination

PRINCIPALS vε-PRINCIPALS Speed-up

q Iteration CPU time Iteration CPU time Iteration CPU time

10 141 1.70 48 0.68 2.94 2.49

9 1363 17.40 438 6.64 3.11 2.62

8 1620 20.19 400 5.98 4.05 3.37

7 1348 16.81 309 4.80 4.36 3.50

6 4542 53.72 869 11.26 5.23 4.77

5 13735 159.72 2949 35.70 4.66 4.47

4 41759 482.59 12521 148.13 3.34 3.26

3 124 1.98 44 1.06 2.82 1.86

Total 64491 752.40 17530 213.57 3.68 3.52

(b) Forward selection

PRINCIPALS vε-PRINCIPALS Speed-up

q Iteration CPU time Iteration CPU time Iteration CPU time

3 4382 67.11 1442 33.54 3.04 2.00

4 154743 1786.70 26091 308.33 5.93 5.79

5 13123 152.72 3198 38.61 4.10 3.96

6 3989 47.02 1143 14.24 3.49 3.30

7 1264 15.27 300 4.14 4.21 3.69

8 340 4.38 108 1.70 3.15 2.58

9 267 3.42 75 1.17 3.56 2.93

10 141 1.73 48 0.68 2.94 2.54

Total 178249 2078.33 32405 402.40 5.50 5.16



Table 2: The numbers of iterations and CPU times of PRINCIPALS and vε-PRINCIPALS, their

speed-ups and P in application to variable selection for finding a subset of q variables using MDOC.

(a) Backward elimination

PRINCIPALS vε-PRINCIPALS Speed-up

q Iteration CPU time Iteration CPU time Iteration CPU time P

23 36 1.39 10 0.65 3.60 2.13 0.694

22 819 32.42 231 15.40 3.55 2.11 0.694

21 779 30.79 221 14.70 3.52 2.10 0.693

20 744 29.37 212 14.05 3.51 2.09 0.693

19 725 28.43 203 13.41 3.57 2.12 0.692

18 705 27.45 195 12.77 3.62 2.15 0.692

17 690 26.67 189 12.25 3.65 2.18 0.691

16 671 25.73 180 11.61 3.73 2.22 0.690

15 633 24.26 169 10.85 3.75 2.24 0.689

14 565 21.79 153 10.02 3.69 2.17 0.688

13 540 20.69 147 9.48 3.67 2.18 0.687

12 498 19.09 132 8.64 3.77 2.21 0.686

11 451 17.34 121 7.95 3.73 2.18 0.684

10 427 16.29 117 7.46 3.65 2.18 0.682

9 459 16.99 115 7.05 3.99 2.41 0.679

8 419 15.43 106 6.42 3.95 2.40 0.676

7 382 14.02 100 5.89 3.82 2.38 0.673

6 375 13.51 96 5.41 3.91 2.50 0.669

5 355 12.58 95 5.05 3.74 2.49 0.661

4 480 16.11 117 5.33 4.10 3.02 0.648

3 2793 86.55 1354 43.48 2.06 1.99 0.620

2 35 1.92 10 1.34 3.50 1.43 0.581

Total 13581 498.82 4273 229.20 3.18 2.18

(b) Forward selection

PRINCIPALS vε-PRINCIPALS Speed-up

q Iteration CPU time Iteration CPU time Iteration CPU time P

2 3442 176.76 1026 119.07 3.35 1.48 0.597

3 5389 170.82 1189 44.28 4.53 3.86 0.633

4 1804 60.96 429 20.27 4.21 3.01 0.650

5 1406 48.53 349 17.41 4.03 2.79 0.662

6 1243 43.25 305 15.75 4.08 2.75 0.668

7 1114 39.03 278 14.61 4.01 2.67 0.674

8 871 31.35 221 12.39 3.94 2.53 0.677

9 789 28.57 202 11.52 3.91 2.48 0.680

10 724 26.32 187 10.74 3.87 2.45 0.683

11 647 23.69 156 9.39 4.15 2.52 0.685

12 578 21.30 142 8.60 4.07 2.48 0.687

13 492 18.39 125 7.76 3.94 2.37 0.688

14 432 16.23 110 6.94 3.93 2.34 0.689

15 365 13.91 95 6.13 3.84 2.27 0.690

16 306 11.80 80 5.30 3.83 2.22 0.691

17 267 10.32 71 4.66 3.76 2.21 0.691

18 226 8.77 60 3.96 3.77 2.21 0.692

19 193 7.48 51 3.39 3.78 2.21 0.692

20 152 5.91 40 2.65 3.80 2.23 0.693

21 108 4.26 30 2.00 3.60 2.13 0.693

22 72 2.85 20 1.33 3.60 2.14 0.694

23 36 1.39 10 0.66 3.60 2.11 0.694

Total 20656 771.88 5176 328.81 3.99 2.35


