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Abstract We derive an explicit form of a Markov basis on the junction tree for a
decomposable log-linear model. Then we give a description of a Markov basis char-
acterized by global Markov properties associated with the graph of a decomposable
log-linear model and show how to use the Markov basis for generating contingency
tables of a Markov chain. The estimates of exact p-values can be obtained from con-
tingency tables generated from the proposed Markov chain Monte Carlo using the
Markov basis.

Keywords Decomposable log-linear models · Junction tree · Markov basis ·
Markov chain Monte Carlo · p-value

1 Introduction

Log-linear models are the general way of studying contingency tables. To measure
how well a log-linear model fits to the data in a contingency table, we use asymp-
totic tests based on large sample approximations such as chi-squared approximations.
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For large and sparse contingency tables, exact tests evaluating statistical significance
using p-values are preferable to asymptotic tests; however, the computation of an exact
p-value for testing a log-linear model may be infeasible due to the enumeration of all
contingency tables with fixed marginals specified by the log-linear model. To study
such tables, Markov chain Monte Carlo (MCMC) is a popular technique for generating
contingency tables with fixed marginals. Diaconis and Sturmfels (1998) suggested the
computation of a Markov basis by finding Gröbner bases, thus allowing the construc-
tion of a Markov chain that connects all contingency tables with fixed marginals.

Graphical models are statistical models for interpreting conditional independence
relationships among a number of variables and are a subclass of the general class
of hierarchical log-linear models, as described in Lauritzen (1996). Decomposable
graphical models, a subclass of graphical models, are important in applied graphical
modeling, because numerous theoretical and computational aspects are more use-
ful and tractable with decomposable graphical models than with general graphical
models. Moreover, an attractive feature of decomposable models is their ease of inter-
pretation. Dobra (2003) gave explicit formulae of Markov bases for decomposable
log-linear models and described the algorithm for generating Markov bases. Geiger
et al. (2006) analyzed the algebraic properties of decomposable graphical models and
provided various characterizations of the models. Hara et al. (2010) clarified struc-
tures of Markov bases for decomposable models and gave a complete description of
minimal and minimal invariant Markov bases for the models.

In this paper, we give a new explicit formula that identifies a Markov basis on
the junction tree for a decomposable log-linear model and show MCMC using the
Markov basis for computing the p-value for a decomposable log-linear model. In
Sect. 2, we define decomposable log-linear models and the junction trees constructed
by the graphs of decomposable log-linear models. In Sect. 3, we give a description of
a Markov basis characterized by the global Markov properties of Lauritzen (1996) on
the graph of a decomposable log-linear model. In Sect. 4, we show how to employ the
Markov basis for generating contingency tables of a Markov chain; then we provide
an algorithm for drawing contingency tables by using the Markov basis. We also
compare the proposed and Dobra’s algorithms for generating tables. Section 5 gives
MCMC using the Markov basis for generating random tables. The estimates of exact
p-values can be calculated from the random tables. In Sect. 6, we present numerical
experiments for examining the performance of the proposed MCMC using real datasets
and simulation studies. Section 7 gives some concluding remarks.

2 Decomposable log-linear models and junction trees

Let X = (X1, . . . , X K ) be a vector of discrete random variables and V = {1, . . . , K }
denote the index set associated with X1, . . . , X K . Each variable Xk takes a finite
number of values xk ∈ Ik = {1, 2, . . . , Ik} for k ∈ V . Let n(x) be the entry for cell
x ∈ I = ∏

k∈V Ik . Then a table of counts n = {n(x)}x∈I is a K -dimensional array
of non-negative integer numbers. For a subset C ⊂ V , we write XC for {Xk}k∈C and
IC = ∏

k∈C Ik . Then the marginal nC of n is the contingency table with marginal
cells xC ∈ IC and entries given by
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MCMC using Markov bases 833

nC (xC ) =
∑

x∈IV\C

n(xC , x),

where (xC , x) ∈ I.
Consider a hierarchical log-linear model specified by a generating class C =

{Ci }1≤i≤M which is a class of variable sets in minimal sufficient statistics. The log-
linear model is graphical if C is the set of cliques of an independence graph. More-
over, the log-linear model is decomposable if the independence graph induced by C
is a hypergraph G = (V, C), where V is the set of vertices and C is the set of cliques,
i.e., the generating class. Detail discussions of decomposable log-linear models can
be found in Lauritzen (1996).

It is known that all the cliques in C of G can be ordered to satisfy the running
intersection property: For all 1 < j ≤ M , there exists an i < j such that

C j ∩ (C1 ∪ · · · ∪ C j−1) ⊂ Ci .

By employing the maximum cardinality search algorithm described in Hájek et al.
(1992), the ordered clique set C can be obtained. When the cliques in C have the
running intersection property, it is possible to construct a junction tree T (C) with C as
its node set, see Jensen and Jensen (1994). We define a clique separator Si for Ci ∈ C
as

Si = Ci ∩
(

i−1⋃

h=1

Ch

)

for i = 2, . . . , M , and denote the set of separators by S = {Si }2≤i≤M . Then a separator
S ∈ S is associated with the edge between a pair of adjacent cliques in T (C).

For T (C), the following lemma is immediately obtained:

Lemma 1 For any two cliques Ci , C j (i < j) in C of T (C), there exists a unique
path from Ci to C j that is the sequence Ci = C ′

0, C ′
1, . . . , C ′

l−1, C ′
l = C j of distinct

cliques.

We can then characterize the conditional independence relationship between any
two cliques Ci , C j on T (C) as follows:

Theorem 1 Assume that there exists a path from Ci to C j (i < j ) such that Ci =
C ′

0, C ′
1, . . . , C ′

l−1, C ′
l = C j . We set Ai , A j and B as

Ai = Ci\S′
i , A j = C j\S j , B = V\(Ai ∪ A j ), (1)

where S′
i = Ci ∩ C ′

1 ∈ S. Then X Ai is conditionally independent of X A j given X B,
i.e., X Ai ⊥ X A j |X B.

Proof The global Markov property defined by Lauritzen (1996) leads to the above
conditional independence relationship. 	


Theorem 1 plays an important role for generating Markov bases in Sect. 3.
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1, 2, 4 2, 4, 5 2, 3, 5

4, 5, 6 5, 6, 7

C2

C4

C3

C5

C1

Fig. 1 The junction tree T (C)

Example 2.1 Let n be a seven-way contingency table of a vector of discrete random
variables X = (X1, . . . , X7) and V = {1, . . . , 7} be the index set of X . Consider
the decomposable log-linear model with generating class C that is the set of ordered
cliques such that C1 = {1, 2, 4}, C2 = {2, 4, 5}, C3 = {2, 3, 5}, C4 = {4, 5, 6}
and C5 = {5, 6, 7}. The marginal tables nC1 , . . . , nC5 are also the minimal sufficient
statistics for the log-linear model.

For the hypergraph G = (V, E) of the log-linear model, the separators in S are given
by S2 = {2, 4}, S3 = {2, 5}, S4 = {4, 5} and S5 = {5, 6}. The junction tree T (C)

defined by C is illustrated in Fig. 1. For example, the path from C3 to C5 in T (C) is
the sequence C3, C2, C4, C5. Then we have A3 = C3\S3 = {3}, A5 = C5\S5 = {7}
and B = V\(A2 ∪ A5) = {1, 2, 4, 5, 6}, so that we can obtain X A3 ⊥ X A5 |X B , or
X3 ⊥ X7|{X1, X2, X4, X5, X6}.

3 Markov bases for decomposable models

Let Γ (C) denote the set of all K -way contingency tables of non-negative integer entries
with fixed marginals nC1 , . . . , nCM . To generate a table n′ ∈ Γ (C) from an original
table n ∈ Γ (C), we can use the data swapping technique of Dalenius and Reiss (1982)
such that cell entries are moved from one cell to the other while the fixed marginals
are left unchanged. Since some of the cell entries are increased and other cells are
decreased in the swapping, a data swap associated with n is an array f = { f (x)}x∈I
with integer entries f (x) ∈ {0,±1,±2, . . .}. Thus n′ created by adding f to n has to
be consistent with fixed marginals.

Definition 1 A move f for C is a data swap that preserves fixed marginals
nC1 , . . . , nCM specified by C.

Then we have n + f ∈ Γ (C) if and only if n(x) + f (x) ≥ 0 for all x ∈ I. From the
marginal constraints associated with clique C ∈ C, we have
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MCMC using Markov bases 835

∑

x∈IV\C

n(xC , x) + f (xC , x) = nC (xC ) and

∑

x∈I
f (x) =

∑

xC ∈IC

∑

x∈IV\C

f (xC , x) = 0.

The move with entries of zero everywhere except four cells that contain two entries
of 1 and two entries of −1 is called a primitive move.

Definition 2 A Markov basis M is a finite collection of moves that preserve fixed
marginals nC1 , . . . , nCM . For any two tables n, n′ ∈ Γ (C), there exists a sequence of
moves f (1), . . . , f (R) ∈ M such that

n′ − n =
R∑

r=1

f (r) and n +
R′
∑

r=1

f (r) ∈ Γ (C),

for 1 ≤ R′ ≤ R.

From the result of Diaconis and Sturmfels (1998), there exists a Markov basis for
any Γ (C). The Markov basis allows the construction of an irreducible Markov chain
on Γ (C). Diaconis and Sturmfels (1998) also described a Markov basis of primitive
moves for the independence model for a two-way contingency table that is the simplest
decomposable log-linear model.

We extend their idea for generating primitive moves for the independence model for
a two-way table to the case of an arbitrary decomposable log-linear model of a multi-
way table. Let C = {C1, . . . , CM } be the set of ordered cliques of a decomposable
graph G or a generating class of a decomposable log-linear model. We describe a
Markov basis for Γ (Ci , C j ) that is the set of all contingency tables with fixed marginals
nCi and nC j . For any two cliques Ci , C j (i < j) in C, the decomposable log-linear
model has the conditional independence structure X Ai ⊥ X A j |X B from Eq. (1). We
break up n into slices corresponding to each value of X B and obtain xB-slice of the
table, {nxB

Ai ∪A j
}xB∈IB , where nxB

Ai ∪A j
= {n(xAi , xA j , xB)}(xAi ,xA j )∈IAi ×IA j

is cross-

classified by X Ai and X A j for fixed xB ∈ IB . Note that {nxB
Ai ∪A j

}xB∈IB preserves

fixed marginals nC1 , . . . , nCM and thus {nxB
Ai ∪A j

}xB∈IB ∈ Γ (C). For some indices

x1
Ai

�= x2
Ai

∈ IAi , x1
A j

�= x2
A j

∈ IA j , we define a primitive move associated with

nxB
Ai ∪A j

by f xB
Ai ∪A j

= { f (xAi , xA j , xB)}(xAi ,xA j )∈IAi ×IA j
, where

f (xAi , xA j , xB) =

⎧
⎪⎨

⎪⎩

1, if (xAi , xA j ) ∈ {(x1
Ai

, x1
A j

), (x2
Ai

, x2
A j

)} with xB fixed,

−1, if (xAi , xA j ) ∈ {(x1
Ai

, x2
A j

), (x2
Ai

, x1
A j

)} with xB fixed,

0, otherwise.

Then

f xB = {±f xB
Ai ∪A j

}(x1
Ai

,x2
Ai

)∈IAi ×IAi ,(x1
A j

,x2
A j

)∈IA j ×IA j
(2)

is a Markov basis for nxB
Ai ∪A j

.
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836 M. Kuroda et al.

The following theorem shows a Markov basis for Γ (Ci , C j ).

Theorem 2 Let Ci and C j be any two clique in C. Then

F(Ci , C j ) =
∑

xB∈IB

f xB (3)

is a Markov basis for Γ (Ci , C j ).

Proof Let f ∈ F(Ci , C j ). We have
∑

x∈IA j ×IB\Ci

n(xCi , x) + f (xCi , x) = nCi (xCi ) for all xCi ∈ ICi ,

∑

x∈IAi ×IB\C j

n(xC j , x) + f (xC j , x) = nC j (xC j ) for all xC j ∈ IC j .

Thus n + f ∈ Γ (Ci , C j ).
Next we prove that F(Ci , C j ) is a Markov basis for Γ (Ci , C j ). From Theorem 1,

we have X Ai ⊥ X A j |X B . We recast X Ai , X A j and X B by new variables Y1, Y2 and Y3
with I1 = ∏

k∈Ai
Ik , I2 = ∏

k∈A j
Ik and I3 = ∏

k∈B Ik categories defined by I1, I2

and I3, respectively. We then have Y1 ⊥ Y2|Y3. Thus it is sufficient to give a Markov
basis for the log-linear model with the generating class {C1, C2} such that C1 = {1, 3}
and C2 = {2, 3}.

Let n be cell counts of the I1× I2× I3 table. By considering the reverse lexicographic
order of the cell indices in I1 ×I2 ×I3, n can be transformed into a linear list of counts
(i.e. vector) n̄. Given a log-linear model, the sufficient statistics b = (n̄C1 , n̄C2) with
the reverse lexicographic order of the cell indices can be written as An̄ = b, where
A is a some integer matrix and called a configuration of the model. For the log-linear
model with {C1, C2} = {{1, 3}, {2, 3}}, A is given by

A =
(

EI3 ⊗ 1�
I2

⊗ EI1

EI3 ⊗ EI2 ⊗ 1�
I1

)

,

where EI is the I × I identity matrix, 1I is the column vector of ones length I , and
⊗ denotes the Kronecker product. After permuting rows of A, we have

A′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

e1 ⊗ 1�
I2

⊗ EI1

e1 ⊗ EI2 ⊗ 1�
I1

...

eI3 ⊗ 1�
I2

⊗ EI1

eI3 ⊗ EI2 ⊗ 1�
I1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where ek is the k-th row of EI3 . By denoting

A′
k =

(
ek ⊗ 1�

I2
⊗ EI1

ek ⊗ EI2 ⊗ 1�
I1

)

= (0I1 I2 . . . 0I1 I2︸ ︷︷ ︸
k−1

AI1 I2 0I1 I2 . . . 0I1 I2︸ ︷︷ ︸
I3−k

),
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A′ is written by the block diagonal matrix

A′ =

⎛

⎜
⎜
⎜
⎝

A′
1

A′
2
...

A′
I3

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

AI1 I2 0AI1 I2

. . .

0 AI1 I2

⎞

⎟
⎟
⎟
⎠

,

where AI1 I2 is the (I1 + I2) × I1 I2 matrix given by

AI1 I2 =
(

1�
I2

⊗ EI1

EI2 ⊗ 1�
I1

)

and 0I1 I2 is the (I1 + I2) × I1 I2 matrix of all zero elements. Note that AI1 I2 is the
same form of the configuration of the independence model for a two-way contingency
table.

Because A′ is the block diagonal matrix, we can compute independently the Gröbner
basis for the toric ideal associated with A′

k and then obtain a Markov basis fk of Eq. (2).
Therefore, F(C1, C2) of Eq. (3) given by the linear combination

f =
∑

k∈I3

fk

of Markov bases {fk}k∈I3 is indeed a Markov basis for Γ (C1, C2). 	


In “Appendix”, we give A′ of the conditional independence model of a three-way
contingency table.

Using Eq. (3), we define a Markov basis on the junction tree for a decomposable
log-linear model as follows:

Definition 3 Let C = {C1, . . . , CM } be the set of ordered cliques of a decomposable
graph G and let T (C) be the junction tree with C as its node set. Then the set of
primitive moves associated with the junction tree T (C) is defined by

F(T (C)) = F(C1, . . . , CM ) =
⋃

Ci ,C j ( �=Ci )∈C
F(Ci , C j ), (4)

where F(Ci , C j ) is given by Eq. (3).

We provide the following theorem for a Markov basis for Γ (C).

Theorem 3 Let T (C) be the junction tree with C = {C1, . . . , CM } as its node set.
Then the set of primitive moves F(T (C)) = F(C1, . . . , CM ) defined by Eq. (4) is a
set of moves for Γ (C). Furthermore F(T (C)) is a Markov basis for Γ (C).

Proof By Definition 3, we have from Theorem 2 that F(T (C)) is a Markov basis for
Γ (C). Thus the result can be obtained immediately. 	
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4 Generating Markov bases on junction trees

4.1 Algorithm for generating random tables

We propose an algorithm for generating a random table in Γ (C). Assume that the
junction tree T (C) of the ordered clique set C can be constructed. We calculate weight
wi j representing the number of moves for F(Ci , C j ) by

wi j =
{

2 ×
(

IAi

2

)

×
(

IA j

2

)}IB

,

where IAi = ∏
k∈Ai

Ik , IA j = ∏
k∈A j

Ik and IB = ∏
k∈B Ik , and normalize wi j by

p(wi j ) = wi j/
∑

1≤s<t≤M wst .
Given a contingency table n, the following algorithm generates a candidate table ñ

by using F(T (C)):

[Algorithm 1: Random table generation]

Step 1: Randomly select two cliques Ci , C j (i < j) in C with probability p(wi j ).
Obtain Ai , A j and B by

Ai =
{

Ci \ S j , if Ci ∩ C j = S j ,

Ci \
(⋃ j

h=i+1 Sh

)
, otherwise,

A j = C j \ S j ,

B = V \ (Ai ∪ A j ).

Step 2: Uniformly choose a move f ∈ F(Ci , C j ).
Step 3: Generate ñ by ñ = n + f .

Then Random table generation produces ñ that 4IB cell entries in n are changed.

Example 4.1 We illustrate Random table generation by using the junction tree intro-
duced in Example 2.1. Assume that C3 and C5 are selected with probability p(w35)

in Step 1. From Eq. (1), we have A3 = {3}, A5 = {7} and B = {1, 2, 4, 5, 6}, i.e.,
X A3 = X3, X A5 = X7 and X B = (X1, X2, X4, X5, X6). Step 2 uniformly selects a
move f ∈ F(C3, C5). To pick f , the following steps are repeated for every xB ∈ IB :

– Choose indices x1
3 �= x2

3 ∈ I3, x1
7 �= x2

7 ∈ I7.

– Obtain a move f xB{3,7} = { f (x3, x7, xB)}, where

f (x3, x7, xB) =
⎧
⎨

⎩

1, if (x3, x7) ∈ {(x1
3 , x1

7), (x2
3 , x2

7 )} with fixed xB,

−1, if (x3, x7) ∈ {(x1
3 , x2

7 ), (x2
3 , x1

7)} with fixed xB,

0, otherwise.

We compute f =∑xB∈IB
εf xB{3,7}, where ε is −1 or +1 with probability 1/2 each. Step

3 generates ñ by ñ = n + f .
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MCMC using Markov bases 839

4.2 Comparison of the proposed and Dobra’s algorithms for generating
random tables

Dobra (2003) defined a Markov basis that is the set of primitive moves and is char-
acterized by the star property of Blair and Barry (1993), which decomposes G into
the triplet of disjoint subsets (V1, S,V2) such that XV1 ⊥ XV2 |X S , where S ∈ S.
When T (C) has the star property such that S separates V1 from V2 in G, it is possible
to construct T ({V1 ∪ S,V2 ∪ S}). When decomposing G using the global Markov
property in Theorem 1, we have T ({Ai ∪ B,A j ∪ B}).

For a given table n, Dobra’s random table generation algorithm based on the star
property produces a candidate table ñ that 4 cell entries in n are changed. We can
see that the number of cells changed by Random table generation is IB times of
that by Dobra’s algorithm, and thus Random table generation produces a variety of
contingency tables in the set of contingency tables with fixed marginals.

Example 4.2 We show the number of cell entries that are changed by using both
algorithms. We assume that Random table generation selects C2 and C4 on the
junction tree introduced in Example 2.1. Then we have A2 = {2}, A4 = {6} and
B = {1, 3, 4, 5, 7} by the decomposition of the global Markov property.

For given (A2, A4, B), we break up n into {nxB{2,6}}xB∈IB . In the case of all variables
of X being binary, we have 32 xB-slices of the 2 × 2 table of X2 and X6. We denote
X B = (X1, X3, X4, X5, X7) = (1, 1, 1, 1, 1) = 1, X B = (1, 1, 1, 1, 2) = 2, . . .,
X B = (2, 2, 2, 2, 2) = 32. Then {nxB{2,6}}xB∈{1,...,32} is displayed as follows:

X B = 1
X6 = 1 X6 = 2

X2 = 1 n(1, 1, 1) n(1, 2, 1)

X2 = 2 n(2, 1, 1) n(2, 2, 1)

X B = 2
X6 = 1 X6 = 2

X2 = 1 n(1, 1, 2) n(1, 2, 2)

X2 = 2 n(2, 1, 2) n(2, 2, 2)
...

...

X B = 32
X6 = 1 X6 = 2

X2 = 1 n(1, 1, 32) n(1, 2, 32)

X2 = 2 n(2, 1, 32) n(2, 2, 32)

For each xB , Random table generation produces ñxB{2,6} = nxB{2,6} + εf xB{2,6}, where

f xB{2,6} ∈ {−1, 1}. Thus Random table generation enables changing all 128(= 4×32)

cell entries in ñ whereas only 4 cell entries in ñ are changed by using Dobra’s algorithm.

5 Computing p-values using MCMC with Markov bases

We provide MCMC using F(T (C)) for generating contingency tables of a Markov
chain on Γ (C). Then the Metropolis–Hastings (M–H) algorithm of Hastings (1970)
can be used to generate the Markov chain. Diaconis and Sturmfels (1998) proved that
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840 M. Kuroda et al.

the Markov chain generated by the M–H algorithm is an irreducible, aperiodic Markov
chain on Γ (C) with a stationary distribution π .

5.1 Generating Markov chains in MCMC

We assume that n has a multinomial distribution. The exact conditional distribution of
n given the set of marginal constraints determined by X Ai ⊥ X A j |X B has the product
hypergeometric distribution with the following probability function:

π(n) =
∏

xB∈IB

π
(

nxB
Ai ∪A j

)

=
∏

xB∈IB

⎧
⎨

⎩

∏
xAi ∈IAi

n(xAi , xB)!∏xA j ∈IAi
n(xA j , xB)!

n(xB)!∏(xAi ,xA j )∈IAi ×IA j
n(xAi , xA j , xB)!

⎫
⎬

⎭
. (5)

Equation (5) indicates that there exists mutual independence between tables
{nxB

Ai ∪A j
}xB∈IB conditional on the fixed marginal table nB .

To generate random tables of a Markov chain on Γ (C), the M–H algorithm iterates
through the following steps:

[Algorithm 2: M-H algorithm for generating a Markov chain]

Step 0: Initialize the iteration counter r = 1 and set n(0) as the initial contingency
table.

Step 1: Generate a candidate table ñ = {ñxB
Ai ∪A j

}xB∈IB by using Random table gen-
eration.

Step 2: For every xB ∈ IB , proceed as follows:

– If all cell entries of ñxB
Ai ∪A j

are non-negative integers, accept ñxB
Ai ∪A j

as the next

table nxB (r)
Ai ∪A j

with probability

α(ñxB
Ai ∪A j

, nxB (r−1)
Ai ∪A j

) = min

⎧
⎨

⎩

π(ñxB
Ai ∪A j

)

π(nxB (r−1)
Ai ∪A j

)
, 1

⎫
⎬

⎭
, (6)

otherwise reject ñxB
Ai ∪A j

and set nxB (r)
Ai ∪A j

= nxB (r−1)
Ai ∪A j

.

Obtain n(r) = {nxB (r)
Ai ∪A j

}xB∈IB ∈ Γ (C).

Step 3: Increment counter r and return to Step 1.

5.2 MCMC computation of p-values and their standard errors

The M–H algorithm draws {n(r)}0≤r≤R0+R ∈ Γ (C) for a specified clique set C. Then,
after discarding the first R0 tables as a burn-in, the p-value via MCMC (MCMC
p-value) can be obtained by
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MCMC using Markov bases 841

p̂ = 1

R

R0+R∑

r=R0+1

I
{
χ2(n(r), m) ≥ χ2(n, m)

}
, (7)

where χ2(n, m) is the Pearson chi-squared statistic given by

χ2(n, m) =
∑

x∈I

{n(x) − m(x)}2

m(x)

and m = {m(x)}x∈I is the set of expected values conditional on marginal constrains
of C.

To evaluate the accuracy of the MCMC estimates, we compute the standard error of
p̂ using the batch means method of Geyer (1992), which works as follows: Dividing
random tables {n(r)}R0+1≤r≤R0+R1 R2 into R1 batches of size R2 each, the MCMC
p-value for the kth batch is then calculated by

p̂k = 1

R2

R0+k R2∑

r=R0+(k−1)R2+1

I
{
χ2(n(r), m) ≥ χ2(n, m)

}
.

The variance estimate of p̂ can be obtained from

Var = 1

R1 − 1

R1∑

k=1

( p̂k − p̂)2 (8)

and the batch means estimate of the Monte Carlo standard error is calculated from√
Var/R1. Then the batch size R1 should be large enough so that p̂ks are approximately

independent. Jones et al. (2006) recommended to use R1 = �√R� and R2 = �R/R1�.

6 Numerical experiments

In this section, we illustrate the performance of the proposed MCMC in comparison
with that of asymptotic chi-squared approximation and Dobra’s MCMC by using
real datasets, and evaluate MCMC for testing decomposable log-linear models via
simulation studies.

6.1 MCMC for computing p-values

In the first experiment, we compute the MCMC p-values for testing decompos-
able log-linear models for sparse contingency tables. The M–H algorithm generates
1,000,000 (= R) random tables with 10,000 (= R0) tables as a burn-in. We also set
R1 = √

R = 1, 000 and R2 = R/R1 = 1, 000 for estimating the standard errors of
the MCMC p values.

The efficiency of the M–H algorithm is measured by the inefficiency factor defined
by Var/σ 2, where Var is computed from Eq. (8) and σ 2 is the variance of p-values
obtained from hypothetical independent samples. The inefficiency factor is related

123



842 M. Kuroda et al.

Table 1 Study of nonmetastatic
osteosarcoma by Goorin et al.
(1987)

Sex (X1) Lymphocytic Osteoblastic Disease-free (X4)

infiltration (X2) pathology (X3) Yes No

Female High No 3 0

Yes 4 0

Low No 5 0

Yes 5 4

Male High No 2 0

Yes 1 0

Low No 3 2

Yes 6 11

to the number of generating samples required to achieve a given degree of numerical
accuracy. Thus the algorithms have higher inefficiency factors when they find p-values
with larger standard errors.

Experiment 1. Table 1 summarizes the data from a study of nonmetastatic osteosarcoma
by Goorin et al. (1987) in which the response is whether the subject achieved a three-
year disease-free interval. This table is a sparse table with some cells having zero
entries. For the contingency table, we consider the decomposable log-linear models
with the junction trees specified by clique sets C1 to C8 given in the first column in
Table 2.

Table 2 lists the results of the experiments. We can find large discrepancies between
the asymptotic p-values obtained using the chi-squared distribution and the MCMC
p-values. They indicate that the asymptotic chi-squared approximation is unreliable
for sparse contingency tables.

Figure 2 shows the autocorrelation plots for the chain values {χ2(n(r), m)}1≤r≤R0

of the burn-in generated by the M–H algorithm using Random table generation (the
proposed M–H algorithm) and the M–H algorithm using Dobra’s random table gen-
eration algorithm (Dobra’s M–H algorithm). We can see from Fig. 2 that the Markov
chain generated by the proposed M–H algorithm converges to a stationary state faster
than that generated by Dobra’s M–H algorithm, because no appreciable dependence
exists after lag 20–30 in the Markov chain from the proposed M–H algorithm. We can
obtain the same results for the rest models with C5 to C8.

We compare the efficiency of two algorithms using the inefficiency factor. Because
σ 2 for the two algorithms is the same for each model, we compare their standard
errors. For all models, the standard errors of the MCMC p-values by the proposed
M–H algorithm are about a half of those of Dobra’s M–H algorithm. We conclude that
the proposed M–H algorithm is more efficient than Dobra’s M–H algorithm for the
experiments.

Experiment 2. The second data shown in Table 3 are from the Avadex data given in
Innes et al. (1969). We consider the decomposable log-linear models with the junction
trees specified by clique sets C1 to C6 given in the first column in Table 4.
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Table 2 Asymptotic p-values versus MCMC p-values

Clique set χ2 value (d f ) Asymptotic MCMC p-value

p-value Proposed M–H Dobra’s M–H

C1 = {{1, 2}, {2, 3}, {2, 4}} 9.267 (8) 0.32024 0.10241 0.10197

(0.00079) (0.00162)

C2 = {{1, 3}, {2, 3}, {3, 4}} 17.846 (8) 0.02241 0.01789 0.01729

(0.00028) (0.00054)

C3 = {{1, 4}, {2, 4}, {3, 4}} 2.655 (8) 0.95410 0.82790 0.83033

(0.00072) (0.00141)

C4 = {{1, 2}, {1, 3}, {1, 4}} 16.187 (8) 0.03978 0.03306 0.03394

(0.00039) (0.00081)

C5 = {{1, 3}, {3, 2}, {2, 4}} 10.332 (8) 0.24250 0.06793 0.06767

(0.00068) (0.00138)

C6 = {{1, 4}, {2, 4}, {2, 3}} 6.116 (8) 0.63424 0.32208 0.31757

(0.00116) (0.00242)

C7 = {{1, 2}, {1, 3}, {3, 4}} 12.833 (8) 0.11772 0.12823 0.12823

(0.00075) (0.00148)

C8 = {{1, 2}, {2, 3}, {3, 4}} 12.250 (8) 0.14040 0.13063 0.13102

(0.00082) (0.00167)

The values in parenthesis are the standard errors of the MCMC p-values

The values of the fourth and fifth columns in Table 4 indicate that the MCMC
p-values obtained by the proposed M–H algorithm are very close to those by Dobra’s
M–H algorithm. The standard errors of the MCMC p-values obtained by the proposed
M–H algorithm are two times smaller than those by Dobra’s M–H algorithm, and thus
the proposed M–H algorithm is two times efficient than Dobra’s M–H algorithm in
terms of the inefficiency factor.

Experiment 3. The third data shown in Table 5 are from a study of the presence or
absence of torus mandibularis in three Aleutian populations from Muller and May-
hall (1971). For the table, we consider the decomposable log-linear models with the
junction trees specified by clique sets C1 to C6 given in the first column in Table 6.

We see from the fourth and fifth columns in Table 6 that the standard errors found
by the proposed M–H algorithm are 1.3–1.6 and 2.4 times smaller than those by
Dobra’s algorithm except the result for C4. These results show that the proposed M–H
algorithm efficiently generates random tables more than Dobra’s M–H algorithm. The
asymptotic chi-squared approximation seems to work well as it returns asymptotic
p-values in agreement with the MCMC p-values.

6.2 MCMC for testing decomposable log-linear models

In the experiment, we focus on the simulation studies of MCMC for testing decom-
posable log-linear models. The simulation design is as follows: We draw n from the
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Fig. 2 Autocorrelation plots of the chi-squared statistic by the proposed and Dobra’s M–H algorithms
(the decomposable log-linear models with the junction trees specified by C1 to C4 given in Table 2 are
arranged from top to bottom).

multinomial distribution with sample size of 50 and cell probabilities conditional on
C as given in Table 7. We compute the asymptotic and MCMC p-values for testing
decomposable log-linear models with the junction trees specified by the clique sets
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Table 3 Lung cancer in mice
exposed to Avadex from
Innes et al. (1969)

Strain (X1) Sex (X2) Exposure Tumors (X4)

status (X3) Y N

X Male Exposed 12 4

Control 74 5

Female Exposed 12 2

Control 84 3

Y Male Exposed 14 4

Control 80 10

Female Exposed 14 1

Control 79 3

Table 4 Asymptotic p-values versus MCMC p-values

Clique set χ2 value (d f ) Asymptotic MCMC p-value

p-value Proposed M–H Dobra’s M–H

C1 = {{1, 2}, {2, 3}, {3, 4}} 8.164 (8) 0.41757 0.42449 0.42619

(0.00176) (0.00338)

C2 = {{1, 3}, {2, 3}, {2, 4}} 11.385 (8) 0.18085 0.17664 0.17851

(0.00151) (0.00314)

C3 = {{1, 4}, {2, 4}, {2, 3}} 11.609 (8) 0.16950 0.16624 0.16586

(0.00157) (0.00286)

C4 = {{1, 4}, {2, 3}, {3, 4}} 8.185 (8) 0.41562 0.42575 0.42149

(0.00200) (0.00374)

C5 = {{1, 2}, {2, 3}, {2, 4}} 10.632 (8) 0.22346 0.21667 0.21324

(0.00153) (0.00293)

C6 = {{1, 3}, {2, 3}, {3, 4}} 8.925 (8) 0.34867 0.35577 0.35226

(0.00194) (0.00384)

The values in parenthesis are the standard errors of the MCMC p-values

given in Table 7. Here the proposed M–H algorithm generates 1,000 random tables
and the MCMC p-values are obtained from Eq. (7). The above procedure is replicated
1,000 times. Then the Type I error rate is computed from the proportion of the number
of the p-values that are smaller than the probability of Type I error α.

Table 8 shows results for tests at α = 0.01, 0.05 and 0.10. We find that, for all
models, the Type I error rates obtained from the MCMC p-values are very close to
α even when they are calculated from 1,000 random tables, while the rates from the
asymptotic p-values greatly differ from each α. As expected, the asymptotic χ2 test
is not reliable for such sparse tables.

Figure 3 shows the plots of the MCMC and asymptotic p-values for each of the
decomposable log-linear models. We can see that the MCMC p-values are almost
identical to α, because they are arranged very close to or on the bisecting line. These
results show that the proposed M–H algorithm for testing decomposable log-linear
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Table 5 Presence or absebce of turus mandibularis in three Aleutian populations from Muller and Mayhall
(1971)

Population Sex (X2) Presence or Age group (X4)

(X1) absence (X3) 1–10 11–20 21–30 31–40 41–50 50+

Lgloolik Male Present 4 8 13 18 10 12

Absent 44 32 21 5 0 1

Female Present 1 11 19 13 6 10

Absent 42 17 17 5 4 2

Hall Beach Male Present 2 5 7 5 4 4

Absent 17 10 6 2 2 1

Female Present 1 3 2 5 4 2

Absent 12 16 6 2 0 0

Aleut Male Present 4 2 4 7 4 3

Absent 6 13 3 3 5 3

Female Present 3 1 2 2 2 4

Absent 10 7 12 5 2 1

Table 6 Asymptotic p-values versus MCMC p-values

Clique set χ2 value (d f ) Asymptotic MCMC p-value

p-value Proposed M–H Dobra’s M–H

C1 = {{1, 4}, {2, 4}, {3, 4}} 61.315 (42) 0.02737 0.03056 0.02952

(0.00117) (0.00185)

C2 = {{1, 4}, {2, 3}, {3, 4}} 64.073 (46) 0.04009 0.03989 0.03909

(0.00093) (0.00225)

C3 = {{1, 2}, {2, 4}, {3, 4}} 72.183 (50) 0.02169 0.01929 0.02522

(0.00129) (0.00176)

C4 = {{1, 3}, {2, 4}, {3, 4}} 70.748 (50) 0.02828 0.02356 0.03278

(0.00199) (0.00195)

C5 = {{1, 3}, {2, 3}, {3, 4}} 73.659 (54) 0.03890 0.04067 0.04026

(0.00196) (0.00244)

C6 = {{1, 2}, {2, 3}, {3, 4}} 75.383 (54) 0.02886 0.03025 0.02838

(0.00134) (0.00189)

The values in parenthesis are the standard errors of the MCMC p-values

models is a valuable alternative to the asymptotic chi-squared test for sparse contin-
gency tables.

7 Concluding remarks

In this study, we showed that a Markov basis on the junction tree for a decomposable
log-linear model can be expressed as the union of Markov bases characterized by
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Table 7 Probabilities of decomposable log-linear models

Table 8 Type I error rates at α = 0.01, 0.05 and 0.10

Clique set α = 0.01 α = 0.05 α = 0.10

Asymptotic MCMC Asymptotic MCMC Asymptotic MCMC

C1 0.023 0.015 0.095 0.054 0.172 0.105

C2 0.020 0.009 0.082 0.044 0.153 0.092

C3 0.025 0.012 0.094 0.056 0.167 0.102

C4 0.023 0.013 0.104 0.057 0.194 0.113

global Markov properties. We provided an explicit form of the Markov basis given
in Definition 3 and then described Random table generation for generating Markov
bases. We also presented the M–H algorithm with a Markov basis for generating
contingency tables of a Markov chain. The M–H algorithm using Random table gen-
eration allows the production of contingency tables globally in the set of contingency
tables with fixed marginals.

In the numerical experiments, we demonstrated that, for decomposable log-linear
models for sparse contingency tables, the M–H algorithm using Random table gener-
ation enables finding more reliable p-values than the asymptotic chi-squared approx-
imation and generates random tables more efficiently than Dobra’s M–H algorithm in
terms of the inefficiency factor.
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Fig. 3 Plots of the MCMC and asymptotic p-values for the decomposable log-linear models with junction
trees specified by C1 to C4 given in Table 7 (starting from top left to right)

Moreover, we found that the proposed M–H algorithm works well to test decom-
posable log-linear models for sparse contingency tables.
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Appendix: Configuration A of the conditional independence model for a three-
way contingency table

We consider a 2 × 2 × 3 table cross-classified by X = (X1, X2, X3). For the table,
we assume the conditional independence that X1 ⊥ X2|X3. When we consider the
reverse lexicographic order of the cell indices in {1, 2} × {1, 2} × {1, 2, 3}, that is,
(1, 1, 1), (2, 1, 1), . . . , (2, 2, 3), A for the conditional independence model is given
by
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A =
(

E3 ⊗ 1�
2 ⊗ E1

E3 ⊗ E2 ⊗ 1�
1

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1
1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By permuting rows of A, we have the block diagonal matrix

A′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
⎛
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A22 0A22
0 A22

⎞
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⎛
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