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a b s t r a c t

Principal components analysis (PCA) is a popular descriptive multivariate method for
handling quantitative data and it can be extended to deal with qualitative data and mixed
measurement level data. The existing algorithms for extended PCA are PRINCIPALS of
Young et al. (1978) and PRINCALS of Gifi (1989) in which the alternating least squares
algorithm is utilized. These algorithms based on the least squares estimation may require
many iterations in their application to very large data sets and variable selection problems
andmay take a long time to converge. In this paper, we derive a new iterative algorithm for
accelerating the convergence of PRINCIPALS and PRINCALS by using the vector ε algorithm
of Wynn (1962). The proposed acceleration algorithm speeds up the convergence of the
sequence of the parameter estimates obtained from PRINCIPALS or PRINCALS. Numerical
experiments illustrate the potential of the proposed acceleration algorithm.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Principal components analysis (PCA) is a popular descriptive multivariate method for handling quantitative data and
is extended to deal with qualitative data and mixed measurement level data. The existing algorithms for extended PCA
are PRINCIPALS of Young et al. (1978) and PRINCALS of Gifi (1989) in which the alternating least squares (ALS) algorithm
is utilized. These algorithms alternate between optimal scaling for quantifying qualitative data and the analysis of the
optimally scaled data using the ordinary PCA approach. We will refer to PRINCIPALS and PRINCALS as PCA.ALS when not
distinguishing between them.
In the application of extended PCA for very large data sets and variable selection problems, many iterations and much

computation time may be required for convergence of PCA.ALS. For example, for PCA based on a subset of variables for
qualitative data, the PRINCIPALS approach taken by Mori et al. (1997) obtained estimates only after a large number of
iterations. In this paper, we derive a new iterative algorithm for speeding up the convergence of PCA.ALS. The proposed
algorithm uses the vector ε (vε) algorithm of Wynn (1962) for accelerating the convergence of PCA.ALS. We refer to vε
accelerated PCA.ALS as vε-PCA.ALS. During iterations of vε-PCA.ALS, the vε algorithm generates an accelerated sequence of
optimal scaling data estimated by PCA.ALS. Then the vε accelerated sequence converges faster than the original sequence
of the estimated optimal scaled data.
The paper is organized as follows. We briefly describe PCA for a mixture of quantitative and qualitative data in Section 2,

and describe PRINCIPALS and PRINCALS for finding least squares estimates of the model and optimal scaling parameters in
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Section 3. Section 4presents the procedure of vε-PCA.ALS that adds the vε algorithm to PCA.ALS for speeding up convergence.
Numerical experiments in Section 5 illustrate the performance and properties of the vε acceleration of PRINCIPALS. In
Section 6, we present our concluding remarks.

2. Principal components analysis with variables measured with a variety of scale levels

PCA transforms linearly an original data set of variables into a substantially smaller set of uncorrelated variables that
containsmuch of the information in the original data set. The original datamatrix is then replaced by an estimate constructed
by forming the product of matrices of component scores and eigenvectors.
Let X = (X1 X2 . . . Xp) be an n× pmatrix of n observations on p variables and be columnwise standardized. In PCA, we

postulate that X is approximated by the following bilinear form:

X̂ = ZA>, (1)

where Z = (Z1 Z2 . . . Zr) is an n× r matrix of n component scores on r (1 ≤ r ≤ p) components, and A = (A1 A2 . . . Ar) is
a p× r matrix consisting of the eigenvectors of X>X/n and A>A = Ir . Then we determine model parameters Z and A such
that

θ = tr(X− X̂)>(X− X̂) = tr(X− ZA>)>(X− ZA>) (2)

is minimized for the prescribed r components.
Ordinary PCA assumes that all variables are measured with interval and ratio scales and can be applied only to

quantitative data. When the observed data contain several different types of variables with nominal, ordinal, interval and
ratio scales, ordinary PCA cannot be directly applied to such data. In such situations, optimal scaling is used to quantify the
observed qualitative data and then ordinary PCA can be applied.
To quantify Xj of qualitative variable jwith Kj categories, the vector is coded by using an n× Kj indicator matrix Gj with

entries g(j)ik = 1 if object i belongs to category k, and g(j)ik′ = 0 if object i belongs to some other category k′(6=k), i = 1, . . . , n
and k = 1, . . . , Kj. Then the optimally scaled vector X∗j of Xj is given by X

∗

j = Gjαj, where αj is a Kj × 1 score vector for
categories of Xj. Let X∗ = (X∗1 X

∗

2 . . . X
∗
p) be an n× pmatrix of optimally scaled observations to satisfy restrictions

X∗>1n = 0p and diag
[
X∗>X∗

n

]
= Ip, (3)

where 1n and 0p are vectors of ones and zeros of length n and p respectively. In the presence of nominal and/or ordinal
variables, the optimization criterion (2) is replaced by

θ∗ = tr(X∗ − X̂)>(X∗ − X̂) = tr(X∗ − ZA>)>(X∗ − ZA>). (4)

To apply PCA to data with mixed measurement levels, we determine the optimal scaling parameter X∗, in addition to
estimating Z and A.

3. Alternating least squares algorithm for principal components analysis

A possible computational algorithm for estimating simultaneously Z, A and X∗ is the ALS algorithm. The algorithm
involves dividing an entire set of parameters of a model into the model parameters and the optimal scaling parameters,
and finds the least squares estimates for these parameters. Themodel parameters are used to compute the predictive values
of themodel. The optimal scaling parameters are obtained by solving the least squares regression problem for the predictive
values. Krijnen (2006) gave sufficient conditions for convergence of the ALS algorithm and discussed convergence properties
in its application to several statisticalmodels. Kiers (2002) described setting up theALS and iterativemajorization algorithms
for solving various matrix optimization problems.

3.1. PRINCIPALS

PRINCIPALS proposed by Young et al. (1978) is a method for utilizing the ALS algorithm for PCA of data with mixed
measurement levels of single discrete and continuous, single nominal, ordinal and numerical variables. PRINCIPALS
alternates between ordinary PCA and optimal scaling, andminimizes θ∗ defined by Eq. (4) under the restriction (3). Then θ∗
is to be determined by model parameters Z and A and optimal scaling parameter X∗, by updating each of the parameters in
turn, keeping the others fixed.
For the initialization of PRINCIPALS, we determine initial data X∗(0). The observed data X may be used as X∗(0) after it

is standardized to satisfy the restriction (3). For given initial data X∗(0) with the restriction (3), PRINCIPALS iterates the
following two steps:
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• Model parameter estimation step: Obtain A(t) by solving[
X∗(t)>X∗(t)

n

]
A = ADr , (5)

where A>A = Ir and Dr is an r × r diagonal matrix of eigenvalues, and the superscript (t) indicates the t-th iteration.
Compute Z(t) from Z(t) = X∗(t)A(t).
• Optimal scaling step: Calculate X̂(t+1) = Z(t)A(t)> from Eq. (1). Find X∗(t+1) such that

X∗(t+1) = argmin
X∗
tr(X∗ − X̂(t+1))>(X∗ − X̂(t+1))

for fixed X̂(t+1) under measurement restrictions on each of the variables. Scale X∗(t+1) by columnwise centering and
normalizing.

3.2. PRINCALS

PRINCALS by Gifi (1989) can handle multiple nominal variables in addition to the single nominal, ordinal and numerical
variables accepted in PRINCIPALS. We denote the set of multiple variables by JM and the set of single variables with single
nominal and ordinal scales and numericalmeasurements byJS . ForX consisting of amixture ofmultiple and single variables,
the algorithm alternates between estimation of Z, A and X∗ subject to minimizing

θ∗ = tr(Z− X∗A)>(Z− X∗A)

under the restriction

Z>1n = 0r and Z>Z = nIp. (6)

For the initialization of PRINCALS, we determine initial data Z(0), A(0) and X∗(0). The values of Z(0) are initialized with
random numbers under the restriction (6). For j ∈ JM , the initial value of X∗j is obtained by X

∗(0)
j = Gj(G>j Gj)

−1G>j Z
(0). For

j ∈ JS , X
∗(0)
j is defined as the first Kj successive integers under the normalization restriction, and the initial value of Aj is

calculated as the vector A(0)j = Z(0)>X∗(0)j . Given these initial values, PRINCALS as provided in Michailidis and de Leeuw
(1998) iterates the following two steps:

• Model parameter estimation step: Calculate Z(t+1) by

Z(t+1) = p−1
(∑
j∈JM

X∗(t)j +
∑
j∈JS

X∗(t)j A(t)j

)
.

Columnwise center andorthonormalizeZ(t+1). EstimateA(t+1)j for the single variable jbyA(t+1)j = Z(t+1)>X∗(t)j /X∗(t)>j X∗(t)j .
• Optimal scaling step: Estimate the optimally scaled vector for j ∈ JM by

X∗(t+1)j = Gj(G>j Gj)
−1G>j Z

(t+1)

and for j ∈ JS by

X∗(t+1)j = Gj(G>j Gj)
−1G>j Z

(t+1)A(t+1)j /A(t+1)>j A(t+1)j

under measurement restrictions on each of the variables.

4. The vε acceleration of the ALS algorithm

We briefly introduce the vε algorithm of Wynn (1962) used in the acceleration of PCA.ALS. The vε algorithm is utilized
to speed up the convergence of a slowly convergent vector sequence and is very effective for linearly converging sequences.
Kuroda and Sakakihara (2006) proposed the ε-accelerated EM algorithm that speeds up the convergence of the EM sequence
via the vε algorithm and demonstrated that its speed of convergence is significantly faster than that of the EM algorithm.
Wang et al. (2008) studied the convergence properties of the ε-accelerated EM algorithm.
Let {Y(t)}t≥0 = {Y(0), Y(1), Y(2), . . .} be a linear convergent sequence generated by an iterative computational procedure

and let {Ẏ(t)}t≥0 = {Ẏ(0), Ẏ(1), Ẏ(2), . . .} be the accelerated sequence of {Y(t)}t≥0. Then the vε algorithm generates {Ẏ(t)}t≥0
by using

Ẏ(t−1) = Y(t) +
[[
(Y(t−1) − Y(t))

]−1
+
[
(Y(t+1) − Y(t))

]−1]−1
, (7)

where [Y]−1 = Y/‖Y‖2 and ‖Y‖ is the Euclidean norm of Y. For the detailed derivation of Eq. (7), see the Appendix. When
{Y(t)}t≥0 converges to a limit point Y(∞) of {Y(t)}t≥0, it is known that, in many cases, {Ẏ(t)}t≥0 generated by the vε algorithm
converges to Y(∞) faster than {Y(t)}t≥0.
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Table 1
The numbers of iterations and CPU times of PRINCIPALS and vε-PRINCIPALS for r = 1, . . . , 15: the mean, minimum and maximum numbers of iterations
from 50 simulated data.

r The number of iterations CPU time
PRINCIPALS vε-PRINCIPALS PRINCIPALS vε-PRINCIPALS
Mean (Min., Max.) Mean (Min., Max.) Mean (Min., Max.) Mean (Min., Max.)

1 17.60 (12, 28) 7.28 (6, 10) 1.92 (1.31, 3.07) 1.03 (0.89, 1.36)
2 168.80 (64, 1158) 53.42 (21, 149) 21.59 (7.18, 189.63) 7.14 (2.66, 25.66)
3 189.16 (74, 1392) 62.00 (45, 245) 24.94 (8.60, 242.08) 8.47 (5.63, 45.19)
4 244.04 (66, 1996) 81.90 (24, 435) 34.82 (7.53, 397.92) 12.42 (3.03, 93.89)
5 260.98 (83, 1141) 85.38 (41, 295) 34.92 (9.75, 187.49) 12.01 (5.21, 52.19)
6 218.26 (88, 481) 75.40 (32, 128) 27.68 (10.36, 65.58) 10.23 (4.95, 18.51)
7 229.98 (96, 739) 79.74 (27, 189) 29.49 (10.61, 109.23) 10.98 (3.28, 29.61)
8 218.80 (79, 596) 77.10 (33, 130) 26.63 (8.58, 80.99) 9.96 (3.89, 18.73)
9 205.22 (87, 1138) 65.30 (33, 301) 25.68 (9.59, 180.51) 8.66 (3.96, 51.19)
10 228.94 (53, 809) 75.20 (29, 375) 29.08 (5.84, 120.67) 10.20 (3.48, 61.00)
11 164.74 (78, 368) 54.04 (32, 126) 20.07 (8.94, 48.23) 7.04 (3.98, 17.48)
12 239.30 (85, 982) 72.34 (32, 182) 31.17 (9.78, 152.03) 9.93 (3.97, 29.75)
13 185.18 (77, 618) 55.96 (23, 155) 23.06 (8.67, 87.61) 7.43 (2.92, 23.27)
14 298.48 (78, 1518) 97.18 (26, 365) 41.32 (8.81, 265.95) 14.32 (3.24, 68.77)
15 235.50 (84, 2732) 77.32 (32, 1153) 35.46 (9.51, 627.89) 13.55 (3.96, 311.59)

We assume that {X∗(t)}t≥0 generated by PCA.ALS converges to a limit point X∗(∞). Then vε-PCA.ALS produces a faster
convergent sequence {Ẋ∗(t)}t≥0 of {X∗(t)}t≥0 by using the vε algorithm and enables the acceleration of convergence of
PCA.ALS. The general procedure of vε-PCA.ALS iterates the following two steps:

• PCA.ALS step: Compute model parameters A(t) and Z(t) and determine optimal scaling parameter X∗(t+1).
• Acceleration step: Calculate Ẋ∗(t−1) using {X∗(t−1),X∗(t),X∗(t+1)} from the vε algorithm:

vec Ẋ∗(t−1) = vecX∗(t) +
[[
vec(X∗(t−1) − X∗(t))

]−1
+
[
vec(X∗(t+1) − X∗(t))

]−1]−1
,

where vecX∗ = (X∗>1 X∗>2 · · · X
∗>
p )
>, and check the convergence by∥∥vec(Ẋ∗(t−1) − Ẋ∗(t−2))

∥∥2 < δ,

where δ is a desired accuracy.

Before starting the iteration, we determine initial data X∗(0) satisfying the restriction (3) and execute the PCA.ALS step twice
to generate {X∗(0),X∗(1),X∗(2)}.
vε-PCA.ALS is designed to generate {Ẋ∗(t)}t≥0 converging to X∗(∞). Thus the estimate of X∗ can be obtained from the

final value of {Ẋ∗(t)}t≥0 when vε-PCA.ALS terminates. The estimates of Z and A can then be calculated immediately from the
estimate of X∗ in theModel parameter estimation step of PCA.ALS.
Note that Ẋ∗(t−1) obtained at the t-th iteration of the Acceleration step is not used as the estimate X∗(t+1) at the (t+ 1)-th

iteration of the PCA.ALS step. Thus vε-PCA.ALS speeds up the convergence of {X∗(t)}t≥0 without affecting the convergence
properties of ordinary PCA.ALS.

5. Numerical experiments

In this section, we examine the performance of vε-PCA.ALS by employing simulated and real data, and demonstrate
the advantage of vε-PCA.ALS over PCA.ALS in terms of the number of iterations and CPU time (in seconds) required for
convergence. All computations are performedwith the statistical package R (R Development Core Team, 2008) executing on
a Celeron 2.8 GHz computer with 1 GB ofmemory. CPU times taken aremeasured by the function proc.time.1 Herewe use
PRINCIPALS as PCA.ALS. For all experiments, δ for convergence of vε-PRINCIPALS is set to 10−8 and PRINCIPALS terminates
when |θ∗(t+1) − θ∗(t)| < 10−8, where θ∗(t) is the t-th update of θ∗ calculated from Eq. (4).

5.1. Simulated data: comparison of the number of iterations and CPU time

In this experiments, we study how much faster vε-PRINCIPALS converges than PRINCIPALS. We apply these algorithms
to a random data matrix of 60 observations on 40 variables with 10 levels and measure the number of iterations and CPU
time taken for r = 1, . . . , 15. The procedure is replicated 50 times.

1 Times are typically available to 10 ms.
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Fig. 1. Boxplots of iteration speed-up from 50 simulated data for r = 1, . . . , 15.

Table 1 shows the summaries of the number of iterations and CPU time taken by PRINCIPALS and vε-PRINCIPALS. We
see from the table that PRINCIPALS requires more iterations and takes a longer time than vε-PRINCIPALS. Table 2 reports
the iteration and CPU time speed-ups for comparing the speed of convergence of PRINCIPALS with that of vε-PRINCIPALS.
The iteration speed-up is defined as the number of iterations required for PRINCIPALS divided by the number of iterations
required for vε-PRINCIPALS. The CPU time speed-up is calculated similarly to the iteration speed-up.We see from the second
to fifth columns in Table 2 that vε-PRINCIPALS converges about 3 times faster than PRINCIPALS in terms of themean number
of iterations and the mean CPU time. The boxplots of the iteration and CPU time speed-ups in Figs. 1 and 2 also indicate that
vε-PRINCIPALS converges 2 to 4 times faster than PRINCIPALS for both. The advantage of the vε acceleration is very obvious.
The computation time per iteration of vε-PRINCIPALS is greater than that of PRINCIPALS due to computation of the

Acceleration step. We calculate the CPU time ratio of PRINCIPALS to vε-PRINCIPALS. The ratio is defined by

the CPU time ratio =
CPU time of PRINCIPALS

the number of iterations of PRINCIPALS

/
CPU time of vε-PRINCIPALS

the number of iterations of vε-PRINCIPALS
.

The values of the mean CPU time ratio reported in the sixth and seventh columns of Table 2 demonstrate that the
computation time of the PRINCIPALS step accounts for 90–95% of that of vε-PRINCIPALS except when r = 1 and thus
considerable time is required for computation of the PRINCIPALS step. This means that the computational cost of the vε
acceleration in the Acceleration step is less expensive than that of PRINCIPALS. Therefore the vε acceleration enables a
significant reduction in the numbers of iterations and computation times with less computational effort.

5.2. Real data

5.2.1. Studies of convergence
We use data obtained in teacher evaluation by students. The data are obtained from 56 students and consisted of 13

categorical variables with 5 levels each; the lowest evaluation level is 1 and the highest 5.
The second and third columns in Table 3 and Fig. 3 show the numbers of iterations of PRINCIPALS and vε-PRINCIPALS.

The fourth and fifth columns in Table 3 give CPU times taken by PRINCIPALS and vε-PRINCIPALS. The values of the iteration
speed-up in the sixth column of Table 3 also indicate that vε-PRINCIPALS converges 3–4 times faster than PRINCIPALS.
The CPU time speed-up in the seventh column of the table demonstrates that the computation times of vε-PRINCIPALS are
2.5–3.5 times shorter than those of PRINCIPALS.
To check the convergence of both algorithms, we calculate the maximum absolute errors defined by

Err(X∗(t)) = max |vec(X∗(t) − X∗(∞))|,
Err(Ẋ∗(t)) = max |vec(Ẋ∗(t) − X∗(∞))|,

where X∗(∞) is the final value of {X∗(t)}t≥0. Fig. 4 illustrates the traces of {Err(X∗(t))}t≥0 and {Err(Ẋ∗(t))}t≥0 for r = 2, 4, 6
and 8. The figures demonstrate that {Ẋ∗(t)}t≥0 converges to X∗(∞) significantly faster than {X∗(t)}t≥0. For each r , Err(Ẋ∗(t))
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Table 2
Iteration and CPU time speed-ups, and CPU time ratios for r = 1, . . . , 15: the mean, minimum and maximum numbers of iterations from 50 simulated
data.

r Speed-up CPU time ratio
Iteration CPU time
Mean (Min., Max.) Mean (Min., Max.) Mean (Min., Max.)

1 2.41 (2.00, 2.88) 1.86 (1.47, 2.30) 0.77 (0.73, 0.81)
2 3.06 (1.36, 7.77) 2.84 (1.25, 7.39) 0.93 (0.89, 0.95)
3 2.93 (1.53, 5.68) 2.73 (1.43, 5.36) 0.93 (0.91, 0.95)
4 2.96 (1.72, 5.40) 2.76 (1.52, 5.12) 0.93 (0.87, 0.95)
5 2.97 (1.82, 4.79) 2.78 (1.71, 4.56) 0.94 (0.92, 0.95)
6 3.07 (1.46, 6.32) 2.87 (1.33, 5.95) 0.93 (0.91, 0.95)
7 3.11 (1.49, 4.74) 2.91 (1.33, 4.45) 0.93 (0.89, 0.95)
8 2.92 (1.58, 4.69) 2.74 (1.47, 4.44) 0.94 (0.92, 0.95)
9 3.13 (1.69, 4.76) 2.92 (1.60, 4.47) 0.93 (0.91, 0.95)
10 3.09 (1.83, 4.35) 2.89 (1.68, 4.12) 0.93 (0.90, 0.95)
11 3.11 (1.55, 4.37) 2.90 (1.44, 4.12) 0.93 (0.90, 0.95)
12 3.25 (1.50, 5.40) 3.04 (1.38, 5.11) 0.93 (0.91, 0.95)
13 3.31 (2.36, 5.04) 3.07 (2.22, 4.71) 0.93 (0.89, 0.95)
14 3.30 (1.47, 9.60) 3.08 (1.37, 9.18) 0.93 (0.89, 0.96)
15 3.32 (1.92, 5.07) 3.09 (1.81, 4.79) 0.93 (0.85, 0.96)

Table 3
The numbers of iterations and CPU times of PRINCIPALS and vε-PRINCIPALS, and the iteration and CPU time speed-ups.

r The number of iterations CPU time Speed-up
PRINCIPALS vε-PRINCIPALS PRINCIPALS vε-PRINCIPALS Iteration CPU time

1 9 4 0.35 0.23 2.25 1.50
2 92 23 3.87 1.10 4.00 3.51
3 28 9 1.14 0.46 3.11 2.49
4 25 8 1.00 0.36 3.57 2.78
5 28 10 1.13 0.49 2.80 2.29
6 29 9 1.16 0.46 3.22 2.52
7 28 9 1.11 0.44 3.11 2.55
8 47 14 1.97 0.68 3.36 2.89
9 45 13 1.82 0.63 3.46 2.90
10 45 14 1.84 0.67 3.21 2.73
11 33 10 1.35 0.49 3.30 2.75
12 40 10 1.61 0.48 4.00 3.33

Fig. 2. Boxplots of CPU time speed-up from 50 simulated data for r = 1, . . . , 15.

after the convergence of vε-PRINCIPALS is smaller than 10−4; this therefore means that {Ẋ∗(t)}t≥0 converges to the same
final value of {X∗(t)}t≥0.
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Fig. 3. Plots of the number of iterations for PRINCIPALS and vε-PRINCIPALS for each r .

Table 4
Rates of convergence τ and τ̇ of PRINCIPALS to vε-PRINCIPALS.

r τ τ̇

1 0.060 0.001
2 0.812 0.667
3 0.489 0.323
4 0.466 0.257
5 0.493 0.388
6 0.576 0.332
7 0.473 0.372
8 0.659 0.553
9 0.645 0.494
10 0.678 0.537
11 0.592 0.473
12 0.648 0.465

Next we measure the rates of convergence of PRINCIPALS and vε-PRINCIPALS. The rates of convergence of these
algorithms are assessed as

τ = lim
t→∞

τ (t) = lim
t→∞

‖X∗(t) − X∗(t−1)‖
‖X∗(t−1) − X∗(t−2)‖

for PRINCIPALS,

τ̇ = lim
t→∞

τ̇ (t) = lim
t→∞

‖Ẋ∗(t) − Ẋ∗(t−1)‖
‖Ẋ∗(t−1) − Ẋ∗(t−2)‖

for vε-PRINCIPALS.

If the inequality 0 < τ̇ < τ < 1 holds, we say that {Ẋ∗(t)}t≥0 converges faster than {X∗(t)}t≥0. We also investigate the speed
of convergence of vε-PRINCIPALS by

ρ̇ = lim
t→∞

ρ̇(t) = lim
t→∞

‖Ẋ∗(t) − X∗(∞)‖
‖X∗(t+2) − X∗(∞)‖

= 0. (8)

From Brezinski and Zaglia (1991) if {Ẋ∗(t)}t≥0 converges to th same limit point X∗(∞) as {X∗(t)}t≥0 and Eq. (8) holds, we
say that {Ẋ∗(t)}t≥0 accelerates the convergence of {Ẋ∗(t)}t≥0. The second and third columns of Table 4 provide the rates of
convergence τ and τ̇ . Fig. 5 shows the traces of {τ (t)}, {τ̇ (t)} and {ρ̇(t)} for r = 2, 4, 6 and 8. From these columns in Table 4
and Fig. 5, we see that {Ẋ∗(t)}t≥0 converges faster than {X∗(t)}t≥0 in comparison between τ and τ̇ for each r and thus conclude
that vε-PRINCIPALS significantly improves the rate of convergence of PRINCIPALS. The behavior of {ρ̇(t)} for each r in Fig. 5
also indicates that vε-PRINCIPALS accelerates the convergence of {X∗(t)}. For other values of r not drawn in the figure, ρ̇ is
reduced to zero.
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Fig. 4. Trace of {Err(X∗(t))} and {Err(Ẋ∗(t))}.

5.2.2. Application to variable selection problems
We consider a situation where more computation is required and investigate how much the vε acceleration algorithm

improves the computational efficiency. In order to do this, we apply the algorithm to the variable selection problem in
Modified PCA (M.PCA) for qualitative data (Mori et al., 2007).
Suppose that we wish to obtain the best subset of variables consisting of q variables among p original variables (1 ≤ q <

p). Let X be an n × p original data set including categorical variables, XV1 an n × q submatrix of X and XV2 the n × (p − q)
remaining submatrix of X. Variable selection using the criterion in M.PCA is to select the best subset of q variables which
has the largest value of the proportion P =

∑r
j=1 λj/tr(S) or the RV -coefficient RV =

{∑r
j=1 λ

2
j /tr(S

2)
}1/2, where λj is the

j-th diagonal element of Dr (the j-th eigenvalue) in the generalized eigenvalue problem

[(S211 + S12S21)− DrS11]A = 0, (9)

and S, S11, and S12(= S>21) are covariance matrices of X, of XV1 , and of XV1 and XV2 , respectively (Tanaka and Mori, 1997).
Based on the above, variable selection in M.PCA for qualitative data (Mori et al., 2007) uses the PRINCIPAL technique, in

which Eq. (5) is replaced by Eq. (9), to obtain λj in the Model parameter estimation step and S = X∗>X∗/n in the Optimal
scaling step for each q.
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Fig. 5. Traces of {τ (t)}, {τ̇ (t)} and {ρ̇(t)}.

Here we employ Backward elimination and Forward selection as cost-saving stepwise selection procedures in which
only one variable is removed or added sequentially (see http://mo161.soci.ous.ac.jp/vaspca/theory/procedureE.html for the
details of procedures). In Backward elimination, to find the best subset of q − 1 variables, we perform M.PCA with the ALS
algorithm (PRINCIPALS for M.PCA) for each of q possible subsets of the q − 1 variables among q variables selected in the
previous selection step. The total number of estimations by PRINCIPALS for M.PCA from q = p − 1 to q = r is, therefore,
p + (p − 1) + · · · + (r + 1) = (p − r)(p + r + 1)/2. Similarly, in Forward selection, the total number of estimations by
PRINCIPALS for M.PCA from q = r to q = p− 1 is pCr + (p− r)+ (p− (r + 1))+ · · · + 2 = pCr + (p− r − 1)(p− r + 2)/2.
In the experiments, we use the same data as in Section 5.2.1 and apply both variable selection procedures using

PRINCIPALS and vε-PRINCIPALS to the data. The selection criterion is the proportion P . For each r (r = 1, . . . , 12), we
measure the total number of iterations and total CPU time when all the best subsets of q variables (q = r, . . . , 12) are
selected.
The values in the second to fifth columns of Table 5 for Backward elimination and those of Table 6 for Forward

selection indicate that the number of iterations of PRINCIPALS is very large and a long time is taken for convergence, while
vε-PRINCIPALS converges considerably faster than PRINCIPALS. We can see from the sixth and seventh columns in these
tables that PRINCIPALS requires the number of iterations 3–4 times greater and CPU time 2.5–3.4 times longer than those of
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Table 5
Thenumbers of iterations andCPU times of PRINCIPALS and vε-PRINCIPALS, and their speed-ups in applying the variable selection problemsusing Backward
elimination procedure.

r The number of iteration CPU time Speed-up
PRINCIPALS vε-PRINCIPALS PRINCIPALS vε-PRINCIPALS Iteration CPU time

1 1203 441 51.95 27.06 2.73 1.92
2 7013 2114 325.07 108.87 3.32 2.99
3 5331 1437 267.89 77.85 3.71 3.44
4 2922 982 127.11 50.87 2.98 2.50
5 2730 858 118.80 44.87 3.18 2.65
6 2645 842 115.06 43.70 3.14 2.63
7 3121 964 140.45 50.57 3.24 2.78
8 3320 904 153.15 47.53 3.67 3.22
9 2523 721 114.42 37.61 3.50 3.04
10 1707 507 75.43 26.32 3.37 2.87
11 1183 318 52.20 16.63 3.72 3.14
12 506 129 22.17 6.97 3.92 3.18

Table 6
The numbers of iterations and CPU times of PRINCIPALS and vε-PRINCIPALS, and their speed-ups in applying the variable selection problems using Forward
selection procedure.

r The number of iteration CPU time Speed-up
PRINCIPALS vε-PRINCIPALS PRINCIPALS vε-PRINCIPALS Iteration CPU time

1 1255 423 53.60 24.96 2.97 2.15
2 5718 1675 260.86 89.47 3.41 2.92
3 16646 5085 742.15 261.64 3.27 2.84
4 39891 11946 1780.50 612.57 3.34 2.91
5 81640 23711 3747.87 1229.88 3.44 3.05
6 123543 34670 5886.94 1834.72 3.56 3.21
7 126576 35396 6072.00 1888.88 3.58 3.21
8 91280 25619 4352.79 1365.93 3.56 3.19
9 47913 13538 2345.94 738.53 3.54 3.18
10 15691 4624 714.00 243.09 3.39 2.94
11 3737 1069 167.91 56.46 3.50 2.97
12 506 129 22.38 7.07 3.92 3.17

vε-PRINCIPALS. The values of the iteration and CPU time speed-ups demonstrate that the vε acceleration algorithm works
well to accelerate the convergence of {X∗(t)}t≥0 and consequently results in greatly reduced computation times.

6. Conclusion

In this paper, we presented vε-PCA.ALS that accelerates the convergence of PCA.ALS by using the vε algorithm. The
algorithm generates the vε accelerated sequence {Ẋ∗(t)} using {X∗(t)}t≥0 but it does not modify the estimation equations
of PCA.ALS. Therefore the algorithm enables an acceleration of the convergence of PCA.ALS while still preserving the stable
convergence property of PCA.ALS. The vε algorithm in itself is a fairly simple computational procedure and, at each iteration,
it requires only O(np) arithmetic operations. For each iteration, the computational complexity of the vε algorithm may be
less expensive than that for computing a matrix inversion and for solving the eigenvalue problem in PCA.ALS.
The most appealing points of vε-PCA.ALS are that, if {X∗(t)}t≥0 convergences to a limit point X∗(∞), then {Ẋ∗(t)}t≥0

converges to X∗(∞) of {X∗(t)}t≥0 and its speed of convergence is faster than that of PCA.ALS. In the application of vε-
PCA.ALS, we do not have to take into account the structure of optimally scaled data sets. The numerical experiments
employing simulated and real data demonstrated that vε accelerated PRINCIPALS improves the speed of convergence of
ordinary PRINCIPALS and significantly speeds up the convergence of {X∗(t)}t≥0 in terms of the number of iterations and
the computation time. Moreover, in the variable selection problems for finding a suitable variable set using Backward
elimination and Forward selection procedures, the vε acceleration enables greatly reducing computation times.
We intend to evaluate theoretically the convergence properties of vε-PCA.ALS. As listed in Young (1981) and Krijnen

(2006), there exist many other ALS types of algorithms. We attempt to speed up the convergence of their ALS algorithms by
incorporating the vε acceleration.
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Appendix. The vε algorithm

Let Y(t) denote a vector of dimensionality d that converges to a vector Y(∞) as t → ∞. Let the inverse [Y]−1 of a vector
Y be defined by

[Y]−1 =
Y
‖Y‖2

,

where ‖Y‖ is the Euclidean norm of Y.
In general, the vε algorithm for a sequence {Y(t)}t≥0 starts with

ε(t,−1) = 0, ε(t,0) = Y(t),

and then generates a vector ε(t,k+1) by

ε(t,k+1) = ε(t+1,k−1) +
[
ε(t+1,k) − ε(t,k)

]−1
, k = 0, 1, 2, . . . . (10)

For practical implementation, we apply the vε algorithm for k = 1 to accelerate the convergence of {Y(t)}t≥0. From Eq. (10),
we have

ε(t,2) = ε(t+1,0) +
[
ε(t+1,1) − ε(t,1)

]−1
for k = 1,

ε(t,1) = ε(t+1,−1) +
[
ε(t+1,0) − ε(t,0)

]−1
=
[
ε(t+1,0) − ε(t,0)

]−1
for k = 0.

Then the vector ε(t,2) becomes as follows:

ε(t,2) = ε(t+1,0) +
[[
ε(t,0) − ε(t+1,0)

]−1
+
[
ε(t+2,0) − ε(t+1,0)

]−1]−1
= Y(t+1) +

[[
Y(t) − Y(t+1)

]−1
+
[
Y(t+2) − Y(t+1)

]−1]−1
.
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