岡山理科大学総合情報学部社会情報学科研究会


 

第61回研究会 案内

 

 ◇テーマ  次元縮約とクラスタリング

 ◇日 時  2015年7月25日(土) 午後(15:00〜17:00)を予定

 ◇場 所  岡山理科大学 50周年記念館3階 会議室
          岡山市北区理大町1-1


<拡大>

  キャンパスマップの紫の△[10]番です。
正門ロータリーのすぐ横、赤い鉄橋の右です。
 

 ◇プログラム

   

コーディネーター:森 裕一(岡山理科大学)

質的データの分析や分類手法について造詣が深く,計量心理学や計算機統計学の分野で多くの業績をもたれているオランダ,Erasmus University RotterdamのMichel van de Velden 氏が来日される機会を利用して,次元縮約とクラスタリングに関する研究会をもちます。
研究会では,テーマに関連する発表と,van de Velden氏からは,最近の研究である質的データの分類を同時推定により行う方法とその周辺についてお話しいただきます。

 
15:00   開会あいさつと講師紹介

  森 裕一(岡山理科大学)
 
15:05   講演1:DROC: An outcome-guided clustering using a component-based approach

  山本倫生(京都大学臨床研究総合センター/医学研究科医学統計生物情報学)

Abstract:

Cluster analysis, in which objects with various features are partitioned into several unpredetermined homogeneous groups (clusters), is one of the major exploratory multivariate analyses. Practically, the cluster analysis is followed by considering the meaning of the obtained clusters. Then, researchers hope that the clusters are related to some outcomes that they are interested in. For example, in the study of medical genetics, the cluster structure given by genome data is expected to be related to the degree of clinical disease. Also, in marketing research, the clusters are expected to relate to consumer behavior. However, it is often difficult to find the meaningful clusters since cluster analysis is essentially an unsupervised classification technique, that is, the cluster structure is estimated without referring to the interested outcomes. Thus, in this study, we propose a new clustering technique called DROC which can provide a partitioning related to some outcome variables. The clusters estimated from the method would be easy to understand since the result can be interpreted from the outcome information. In the method, the aim is attained by a simple transformation of exploratory variables using outcome variables. Also, a property of the proposed method as a dimension reduction technique is discussed. Furthermore, we study a modification of the proposed method to deal with moderately high-dimensional data.


15:35   講演2:Cluster Correspondence Analysis

  Michel van de Velden (Econometric Institute, Erasmus University Rotterdam)

Abstract:

A new method is proposed that combines dimension reduction and cluster analysis for categorical data. The new method simultaneously assigns individuals to clusters and optimalscaling values to categories in such a way that a single between variance objective is achieved. In a uni ed framework, a brief review of alternative methods is provided and performanceof the methods is appraised by means of a simulation study. The results of the joint dimension reduction and clustering methods are compared with the so-called tandem approach; asequential analysis of dimension reduction followed by cluster analysis. The tandem approach is conjectured to perform worse when variables are added that are unrelated to the clusterstructure. Our simulation study con rms this conjecture. Moreover, the results of the simulation study indicate that the new method outperforms alternative joint dimension reductionand clustering methods in most scenarios.

(joint work with Alfonso Iodice D'Enza  and Francesco Palumbo)


16:20   休憩

 

16:40   講演3:Least-squares Bilinear Clustering of Three-way Data

  Michel van de Velden (Econometric Institute, Erasmus University Rotterdam)

Abstract:

A least-squares bilinear clustering framework for modelling three-way data, where each observationconsists of an ordinary two-way matrix, is introduced. The method combines bilinear decompositionsof the two-way matrices into overall means, row margins, column margins and row-columninteractions with clustering along the third way. Di erent clusterings are defined for each part ofthe decomposition, so that up to four di erent classifications are defined jointly. The computationalburden is greatly reduced by the orthogonality of the bilinear model, such that the joint clusteringproblem reduces to separate ones which can be handled independently. Three of these sub-problemsare specific cases of k-means clustering; a special algorithm is formulated for the row-column interactions,which are displayed in clusterwise biplots. The method is illustrated via two empiricalexamples and interpreting the interaction biplots are discussed.

(joint work with  Pieter Schoonees and Patrick Groenen)


17:25   総合討論

 

18:00  

閉 会 

  黒田 正博(岡山理科大学)

 

 ◇参加費  参加費 無料(懇親会は実費)

 ◇懇親会  18:30から懇親会を予定しています。

 ◇参加申込 研究会には参加申し込みは不要ですが,
           懇親会に参加の方は次のフォームで,

             黒田 正博(岡山理科大学) <kuroda(atmark)soci.ous.ac.jp>

           までメールでお申し込みください(前日までにお願いします)
                ----------------------------------------------------------
                参加申し込みフォーム
                 お名前
                 研究会に[参加します・参加しません]。(不要な方を削除ください)
                 懇親会に[参加します・参加しません]。(不要な方を削除ください)
                ----------------------------------------------------------

 ◇共 催  日本行動計量学会岡山地域部会(第56回研究会)
         岡山統計研究会(第156回)

■ 連絡先

    森 裕一(社会情報学科 第61回研究会世話人)
      E-mail: mori

      岡山理科大学 総合情報学部 社会情報学科
      〒700-0005 岡山市北区理大町1-1


社会情報学科
総合情報学部
岡山理科大学
-------------------------------------------------------------
2015.07.14更新
Copyright (C) 2005-2015 Dept. Socio-Information, Okayama University of Science