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Abstract

In this paper, we discuss the MLEs for log-linear models with partially classified data. We propose to apply the Aitken δ2 method
of Aitken [Aitken, A.C., 1926. On Bernoulli’s numerical solution of algebraic equations. Proc. R. Soc. Edinburgh 46, 289–305] to
the EM and ECM algorithms to accelerate their convergence. The Aitken δ2 accelerated algorithm shares desirable properties of the
EM algorithm, such as numerical stability, computational simplicity and flexibility in interpreting the incompleteness of data. We
show the convergence of the Aitken δ2 accelerated algorithm and compare its speed of convergence with that of the EM algorithm,
and we also illustrate their performance by means of a simulation.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The expectation and maximization (EM) algorithm proposed by Dempster et al. (1977) is often used to find
maximization likelihood estimates (MLEs) for log-linear models with partially classified data because of its stability,
flexibility and simplicity, see Fuchs (1982) and Chen et al. (1984). However the EM algorithm converges slowly when
there is a relatively large proportion of partially classified data. Many algorithms have been proposed to speed up
the convergence of the EM algorithm, see McLachlan and Krishnan (1997). Newton-type accelerators require the
computation of a matrix inversion at each iteration of the EM algorithm. The computation becomes increasingly more
complicated as the number of parameters increases, and it also becomes numerically unstable.

In this paper, we apply the Aitken δ2 method of Aitken (1926) to the EM and ECM algorithms to speed up their
convergence. The Aitken δ2 acceleration does not affect the simplicity, stability and flexibility of the EM algorithm.
The Aitken δ2 accelerated method is then applied to log-linear models with partially classified data.

In Section 2, we introduce log-linear models and the EM and ECM algorithms for partially classified data. In
Section 3, we provide the Aitken δ2 acceleration for the EM and ECM algorithms and present theoretical results
concerning their convergence. Numerical experiments in Section 4 illustrate the performance of Aitken δ2 acceleration
for the EM and ECM algorithms.
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2. Log-linear models and the EM algorithm

Let XV = (X1, . . . , Xk) be a k-dimensional discrete random vector indexed by V = {1, . . . , k}. We also denote
a finite set of values of X i by Ωi for i ∈ V , and the space of possible values of XV as the Cartesian product
ΩV =

∏
i∈V Ωi . For a subset A ⊆ V , we write X A for {X i |i ∈ A} and ΩA =

∏
i∈A Ωi .

Let p(xV ) denote the cell probability that XV = xV and let θ = {p(xV )|xV ∈ ΩV } be the set of cell probabilities.
The marginal probability that X A = xA for A ⊂ V can be calculated by

p(xA) =

∑
xV \A

p(xV ),

where the symbol “\” denotes the set difference.
In this paper, we consider hierarchical log-linear models for contingency tables with a multinomial distribution. A

hierarchical log-linear model is represented by a generating class E = {e1, . . . , eM } which is a class of variable sets
in maximal interaction terms, and ei ∈ E is called a generator. For example, consider a log-linear model with the
generating class E = {{1, 2}, {1, 3}, {2, 3}}. Then the log-linear model is

log p(xV ) = u + u1(x{1}) + u2(x{2}) + u3(x{3}) + u12(x{1,2}) + u12(x{1,3}) + u23(x{2,3}). (1)

For the situation of missing data, the completely classified data are represented in the full contingency tables and
the partially classified data are represented in supplemental tables. These tables are indexed with an observing pattern
T = {V, t1, . . . , tS}, where each configuration t is a set of observed variables for a supplemental table. The cell counts
of the contingency table classified by the observed variables X t are denoted by nt = {nt (xt )|xt ∈ Ωt }. Assume that
the missing data are missing at random in the sense of Rubin (1976).

Below we show the EM algorithm for finding the MLE of the parameter vector θ for a log-linear model with a
generating class E and an observing pattern T = {V, t1, . . . , tS}. For log-linear models with closed-form MLEs, the
EM algorithm repeats the following two steps until convergence to a desired accuracy is obtained:

E-step: Calculate the expected marginal cell counts ñ(r)
e = {ñe(xe)

(r)
|xe ∈ Ωe} for each generator e ∈ E :

ñe(xe)
(r)

=

∑
xV \e

[
nV (xV ) +

S∑
i=1

p(xV )(r)

p(xti )
(r)

nti (xti )

]
. (2)

M-step: Calculate marginal probabilities {p(xe)
(r+1)

|xe ∈ Ωe} for each generator e ∈ E :

p(xe)
(r+1)

=
ñe(xe)

(r)

N
,

where N =
∑

t∈T
∑

xt ∈Ωt
nt (xt ). Then find θ (r+1) from

p(xV )(r+1)
=

∏
e∈E

p(xe)
(r+1)∏

c∈C
(p(xc)(r+1))ν(c)

, (3)

where C = (c1, . . . , cM−1) is a set of separators of E which may have the same elements, and ν(c) counts
the number of separators equal to c. C can be obtained by

ci = eσ( j) ∩ (eσ(1) ∪ · · · ∪ eσ( j−1)), for 1 ≤ i < j ≤ M,

where the generating class E = {e1, . . . , eM } can be ordered as E = (eσ(1), eσ(2), . . . , eσ(M)) in such a way
that it has the running intersection property:

eσ( j) ∩ (eσ(1) ∪ · · · ∪ eσ( j−1)) ⊂ eσ(i),

for some i < j , see Lauritzen (1995).
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When log-linear models do not have closed-form MLEs, such as in the case of the model (1), the ECM algorithm
of Meng and Rubin (1993) may be applied. In the ECM algorithm, the M-step of the EM algorithm is replaced by
several computationally simpler CM-steps:

CM-step: Find θ (r+1) with the iterative proportional fitting procedure of Bishop et al. (1975) as follows:

p(xV )(r+i/M)
=

p(xV )(r+(i−1)/M)

p(xei )
(r+(i−1)/M)

ñei (xei )
(r)

N
, (4)

for i = 1, 2, . . . , M .

At each CM-step, the iteration is implemented for every generator once only, and is not repeated until convergence.

3. The Aitken δ2 acceleration

The Aitken δ2 method is a nonlinear method for accelerating the convergence of scalar sequences and it is
particularly powerful for linear sequence convergence. The method is a simple and computationally inexpensive
procedure.

First, we describe the Aitken δ2 method. Let {φ(r)
}r≥0 be a scalar sequence which converges to φ∗. For the scalar

sequence {φ(r)
}r≥0, the Aitken δ2 method generates a sequence {φ̇(r)

}r≥0 by

φ̇(r)
= φ(r)

−
(φ(r+1)

− φ(r))2

φ(r+2) − 2φ(r+1) + φ(r)
. (5)

For convergence of the scalar sequence {φ̇(r)
}r≥0, Traub (1964) provided the following lemma.

Lemma 1. If {φ(r)
}r≥0 converges to a stationary point φ∗ as r → ∞, then {φ̇(r)

}r≥0 generated by Eq. (5) converges
to the same stationary point φ∗.

To compare the speed of convergence of the sequence {φ̇(r)
}r≥0 from the Aitken δ2 method with that of the sequence

{φ(r)
}r≥0, we use the following notion of Brezinski and Zaglia (1991).

Definition 1. Let {φ̂(r)
}r≥0 be a scalar sequence obtained by applying an extrapolation method to {φ(r)

}r≥0. Assume
that limt→∞ φ(r)

= limt→∞ φ̂(r)
= φ∗. If

lim
t→∞

|φ̂(r)
− φ∗

|

|φ(r) − φ∗|
= 0,

then we say that the sequence {φ̂(r)
}r≥0 converges to φ∗ faster than {φ(r)

}r≥0 or that the extrapolation method
accelerates the convergence of {φ(r)

}r≥0.

Traub (1964) proved that the Aitken δ2 method accelerates the convergence of {φ(r)
}r≥0 in the sense that

lim
r→∞

|φ̇(r)
− φ∗

|

|φ(r+2) − φ∗|
= 0. (6)

Next we apply the Aitken δ2 acceleration to the EM and ECM algorithms. For simplicity, we write θ =

{pV (xV )|xV ∈ ΩV } = (θ1, θ2, . . . , θd), where d is the number of cells in the contingency table and the probability
of the last cell is θd = 1 −

∑d−1
j=1 θ j . Since the Aitken δ2 method is an accelerator for a scalar sequence but not for a

vector sequence, we transform the parameter vector θ into distinct scalar parameters. A multinomial distribution with
d cells can be factorized into d − 1 independently conditional binomial distributions whose parameters ϕ = ϕ(θ) are
defined respectively as

ϕ = (φ1, φ2, . . . , φd−1)

=

θ1,
θ2

1 − θ1
, . . . ,

θd−1

1 − (
d−2∑
j=1

θ j )

 , (7)
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(see the Appendix). Since ϕ = ϕ(θ) is a one–one function of θ , the stationary point of ϕ = ϕ(θ) is ϕ(θ∗) for the
stationary point θ∗ of θ . In order to accelerate the convergence of the sequence {θ (r)

}r≥0 obtained by the EM or ECM
algorithms, we apply the Aitken δ2 acceleration to generate the sequence {θ̇ (r)

}r≥0. The Aitken δ2 acceleration for the
EM and ECM algorithms is presented as follows.
Let θ (0)

= θ̇ (0) denote the initial value.

E-step: Using θ (r)
= {p(xV )(r)

|xV ∈ ΩV } and the observed frequencies, calculate the expected marginal counts ñ(r)
e

for each generator e ∈ E by Eq. (2).
M (or CM)-step: Find θ (r+1)

= {p(xV )(r+1)
|xV ∈ ΩV } by using Eq. (3) or (4).

Aitken δ2acceleration: Calculate

ϕ(r−1)
= ϕ(θ (r−1)), ϕ(r)

= ϕ(θ (r)), ϕ(r+1)
= ϕ(θ (r+1))

by Eq. (7) where (θ (r−1), θ (r), θ (r+1)) is obtained at the previous M (or CM)-steps. Generate a vector
ϕ̇(r−1)

= (φ̇
(r−1)
i )i=1,...,d−1 from

φ̇
(r−1)
i = φ

(r−1)
i −

(φ
(r)
i − φ

(r−1)
i )2

φ
(r+1)
i − 2φ

(r)
i + φ

(r−1)
i

, i = 1, 2, . . . , d − 1.

Calculate θ̇ (r−1) from

θ̇ (r−1)
= (θ̇

(r−1)
1 , θ̇

(r−1)
2 , . . . , θ̇

(r−1)
d−1 , θ̇

(r−1)
d )

=

(
φ̇

(r−1)
1 , φ̇

(r−1)
2 (1 − φ̇

(r−1)
1 ), . . . , φ̇

(r−1)
d−1

d−2∏
j=1

(1 − φ̇
(r−1)
j ), 1 −

(
d−1∑
j=1

θ̇
(r−1)
j

))
(8)

and check the convergence by

max
1≤i≤d

|θ̇
(r−1)
i − θ̇

(r−2)
i | ≤ δ,

where δ is the desired accuracy.

Note that to find the expected frequencies at each E-step, we use θ (r)
= {p(xV )(r)

|xV ∈ ΩV } obtained at the
previous M-step but not the θ̇ (r) obtained at the previous Aitken δ2 acceleration. Below we give the properties of the
convergence of the Aitken δ2 acceleration for the EM and ECM algorithms. Let θ∗ denote a stationary point of the
sequence {θ (r)

}r≥0 obtained by the EM or ECM algorithm.

Theorem 1. For a given initial value θ (0), the sequence {θ̇ (r)
}r≥0 obtained by using the Aitken δ2 acceleration

converges to the same stationary point θ∗.

Proof. Since ϕ = ϕ(θ) of Eq. (7) is a one–one monotone function of θ , we need only prove convergence of the
sequence {ϕ̇(r)

}r≥0 to the stationary point ϕ∗ of the sequence {ϕ(r)
}r≥0.

If {ϕ(r)
}r≥0 is a convergent vector sequence to the vector ϕ∗, then ‖ϕ(r)

− ϕ∗
‖∞ converges to zero as r → ∞,

moreover |φ
(r)
i − φ∗

i | converges to zero as r → ∞, where ‖ · ‖∞ = maxi {| · |}. Thus, from the above facts and
Lemma 1, the sequence {ϕ̇(r)

}r≥0 converges to the stationary point ϕ∗ of the sequence {ϕ(r)
}r≥0 as r → ∞. �

In the following theorem, we show the speed of convergence of the Aitken δ2 accelerated EM and ECM algorithms.

Theorem 2. The Aitken δ2 acceleration speeds up the convergence of the EM and ECM algorithms, that is, for all i ,

lim
r→∞

|θ̇
(r)
i − θ∗

i |

|θ
(r+2)
i − θ∗

i |

= 0.

Proof. From Eq. (6), we have

lim
r→∞

|φ̇
(r)
i − φ∗

i |

|φ
(r+2)
i − φ∗

i |

= 0,
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Table 1
A three-way contingency table with partially classified frequencies

Clinic (X1) Prenatal Care (X2) Survival (X3)
Died Survived

(a) Completely classified cases
A Less 3 176

More 4 293
B Less 17 197

More 2 23
(b) Partially classified cases (Clinic missing)

Less 50 500
More 25 150

(c) Partially classified cases (Prenatal Care missing)
A 10 900
B 20 500

Source: (a) Bishop et al. (1975), Table 2.4-2. (b) and (c) Artificial data.

for all i . Since θ̇ (r) of Eq. (8) is a one–one monotone function of ϕ̇(r), it follows that

lim
r→∞

|θ̇
(r)
i − θ∗

i |

|θ
(r+2)
i − θ∗

i |

= 0,

for all i . Thus the sequence {θ̇ (r)
}r≥0 converges to θ∗ faster than {θ (r)

}r≥0 does. �

4. Numerical experiments

In this section, we illustrate how much faster the Aitken δ2 accelerated EM algorithm converges compared to the
EM algorithm using numerical experiments. Note that the convergence speed of the Aitken δ2 acceleration does not
depend on the structure of the log-linear models but on the EM and ECM sequences.

Example 1. Consider a 2 × 2 × 2 contingency table concerning the survival of infants in Table 1. The completely
classified data in Table 1(a) was previously analyzed in Bishop et al. (1975), and Table 1(b) and (c) give the artificial
data. For the data of Table 1(b), Clinic (X1) is missing; for the data of Table 1(c), Prenatal Care (X2) is missing. The
observed pattern is T = {{1, 2, 3}, {1, 2}, {2, 3}}. Suppose that the data have a multinomial distribution with unknown
parameter θ .

Table 2 summarizes the MLEs for several log-linear models and the numbers of iterations for the EM and ECM
algorithms and the Aitken δ2 acceleration with the desired accuracy δ = 10−9. We applied the ECM algorithm to the
no third-order-interaction term model with E = {{1, 2}, {1, 3}, {2, 3}}. As shown in Table 2, the Aitken δ2 acceleration
converges to the MLEs faster than the EM algorithm, and the convergence speed is about twice as fast as that of the
EM algorithm for all of these log-linear models.

Example 2. Consider a 2 × 2 contingency table with completely and partially classified observations. Let X1 and X2
be dichotomous variables. Suppose that the observed frequencies have a multinomial distribution with a parameter
vector θ . The observed frequencies classified by X1 and X2 are

n12 = (n12(1, 1), n12(2, 1), n12(1, 2), n12(2, 2)) = (5, 2, 4, 1),

and the frequencies partially classified by X1 are

n1 = (n1(1), n1(2)) = (75, 25).

Several data sets of the observed frequencies n2 partially classified by X2 are given in the first two columns of
Table 3. Set the desired accuracy δ to be 10−9. From the third column of Table 3, we can see that for these data
sets, the convergence of the EM algorithm is quite slow, and its convergence depends largely on the proportion of
incompletely observed frequencies. From the fourth column of Table 3, we can see that Aitken δ2 acceleration speeds
up the convergence of the EM algorithm by a factor between 2 and 4.
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Table 2

MLEs for each log-linear model and the numbers of iterations required by the EM and ECM algorithms and the Aitken δ2 acceleration

Clinic (X1) Prenatal Care (X2) Survival (X3) Number of iterations
Died Survived EM or ECM Aitken δ2 acceleration

(a) Saturated model with E = {{1, 2, 3}}

A Less 0.0046 0.1450 137 61
More 0.0140 0.3327

B Less 0.0133 0.4142
More 0.0018 0.0745

(b) No three-interaction model with E = {{1, 2}, {1, 3}, {2, 3}}

A Less 0.0056 0.1438 133 59
More 0.0129 0.3341

B Less 0.0125 0.4160
More 0.0027 0.0722

(c) Conditional independence model with E = {{1, 2}, {1, 3}}

A Less 0.0057 0.1439 130 57
More 0.0131 0.3338

B Less 0.0128 0.4151
More 0.0023 0.0722

(d) Conditional independence model with E = {{1, 2}, {2, 3}}

A Less 0.0046 0.1446 131 57
More 0.0129 0.3341

B Less 0.0131 0.4160
More 0.0028 0.0721

(e) Conditional independence model with E = {{1, 3}, {2, 3}}

A Less 0.0010 0.2430 38 18
More 0.0076 0.2244

B Less 0.0090 0.2595
More 0.0068 0.2396

Table 3

The numbers of iterations required by the EM and the Aitken δ2 acceleration

Total n2 Number of iterations
EM Aitken δ2 acceleration

200 (94, 106) 284 73
400 (233, 167) 42 12
600 (272, 328) 609 158
800 (471, 329) 261 116

1000 (467, 533) 898 205
1200 (679, 521) 605 178
1400 (654, 746) 1,182 262
1600 (704, 896) 1,351 342
1800 (900, 900) 1364 286
2000 (1012, 988) 1462 311
2200 (1144, 1056) 1499 333
2400 (1031, 1369) 1908 486
2600 (1440, 1160) 1338 368
2800 (1141, 1659) 2172 597
3000 (1410, 1590) 2234 479
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Appendix

Let Y = (Y1, . . . , Yd) be a random vector from a multinomial distribution with a parameter vector θ =

(θ1, θ2, . . . , θd), where θd = 1 − (
∑d−1

i=1 θi ). That is, the distribution of Y is given by

f (y|θ) =
n!

y1!y2! · · · yd !
θ

y1
1 θ

y2
2 · · · θ

yd
d ,

where n =
∑d

i=1 yi . Using a chain of binomial random variables, the multinomial distribution can be factorized into
a product of conditional binomial distributions of Yi ’s as follows:

f (y|θ) =

[
n!

y1!(n − y1)!
θ

y1
1 (1 − θ1)

n−y1

]
×

[
(n − y1)!

y2!(n − y1 − y2)!

(
θ2

1 − θ1

)y2
(

1 − θ1 − θ2

1 − θ1

)n−y1−y2
]

× · · · ×


(n − (

d−2∑
j=1

y j ))!

yd−1!yd !

 θd−1

1 − (
d−2∑
j=1

θ j )


yd−1

 θd

1 − (
d−2∑
j=1

θ j )


yd
 .

Thus we can obtain the parameterization ϕ = ϕ(θ) given by

ϕ = (φ1, φ2, . . . , φd−1)

=

θ1,
θ2

1 − θ1
, . . . ,

θd−1

1 − (
d−2∑
j=1

θ j )

 .
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